AI‐powered visual diagnosis of vulvar lichen sclerosus: A pilot study

医学 小阴唇 人工智能 皮肤病科 外阴 计算机科学
作者
Philippe Gottfrois,Jie Zhu,Alexandra Steiger,Ludovic Amruthalingam,André B. Kind,Viola Heinzelmann,C. Mang,Alexander A. Navarini,Simon M. Mueller
出处
期刊:Journal of The European Academy of Dermatology and Venereology [Wiley]
卷期号:38 (12): 2280-2285 被引量:2
标识
DOI:10.1111/jdv.20306
摘要

Abstract Background Vulvar lichen sclerosus (VLS) is a chronic inflammatory skin condition associated with significant impairment of quality of life and potential risk of malignant transformation. However, diagnosis of VLS is often delayed due to its variable clinical presentation and shame‐related late consultation. Machine learning (ML)‐trained image recognition software could potentially facilitate early diagnosis of VLS. Objective To develop a ML‐trained image‐based model for the detection of VLS. Methods Images of both VLS and non‐VLS anogenital skin were collected, anonymized, and selected. In the VLS images, 10 typical skin signs (whitening, hyperkeratosis, purpura/ecchymosis, erosion/ulcers/excoriation, erythema, labial fusion, narrowing of the introitus, labia minora resorption, posterior commissure (fourchette) band formation and atrophic shiny skin) were manually labelled. A deep convolutional neural network was built using the training set as input data and then evaluated using the test set, where the developed algorithm was run three times and the results were then averaged. Results A total of 684 VLS images and 403 non‐VLS images (70% healthy vulva and 30% with other vulvar diseases) were included after the selection process. A deep learning algorithm was developed by training on 775 images (469 VLS and 306 non‐VLS) and testing on 312 images (215 VLS and 97 non‐VLS). This algorithm performed accurately in discriminating between VLS and non‐VLS cases (including healthy individuals and non‐VLS dermatoses), with mean values of 0.94, 0.99 and 0.95 for recall, precision and accuracy, respectively. Conclusions This pilot project demonstrated that our image‐based deep learning model can effectively discriminate between VLS and non‐VLS skin, representing a promising tool for future use by clinicians and possibly patients. However, prospective studies are needed to validate the applicability and accuracy of our model in a real‐world setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助是草莓采纳,获得10
1秒前
1秒前
1秒前
2秒前
小秋完成签到,获得积分10
2秒前
dal完成签到,获得积分20
4秒前
4秒前
爆米花应助文艺谷蓝采纳,获得10
5秒前
23lk发布了新的文献求助10
5秒前
煎蛋发布了新的文献求助10
6秒前
6秒前
kaola发布了新的文献求助10
6秒前
科目三应助无心的土豆采纳,获得10
8秒前
dal发布了新的文献求助10
8秒前
852应助一下打死七个采纳,获得10
8秒前
9秒前
10秒前
dongdong完成签到 ,获得积分10
11秒前
12秒前
cqq完成签到,获得积分10
13秒前
秋秋发布了新的文献求助10
13秒前
14秒前
17秒前
18秒前
19秒前
英俊的铭应助VeronicaChow01采纳,获得10
21秒前
26秒前
李健应助estk采纳,获得10
27秒前
penpen完成签到,获得积分10
28秒前
31秒前
32秒前
深情安青应助kaola采纳,获得10
32秒前
越野完成签到 ,获得积分10
33秒前
一下打死七个完成签到,获得积分10
35秒前
兔子发布了新的文献求助10
36秒前
36秒前
37秒前
39秒前
estk发布了新的文献求助10
40秒前
33完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999175
求助须知:如何正确求助?哪些是违规求助? 3538547
关于积分的说明 11274517
捐赠科研通 3277430
什么是DOI,文献DOI怎么找? 1807585
邀请新用户注册赠送积分活动 883948
科研通“疑难数据库(出版商)”最低求助积分说明 810080