AI‐powered visual diagnosis of vulvar lichen sclerosus: A pilot study

医学 小阴唇 人工智能 皮肤病科 外阴 计算机科学
作者
Philippe Gottfrois,Jie Zhu,Alexandra Steiger,Ludovic Amruthalingam,André B. Kind,Viola Heinzelmann,C. Mang,Alexander A. Navarini,Simon M. Mueller
出处
期刊:Journal of The European Academy of Dermatology and Venereology [Wiley]
卷期号:38 (12): 2280-2285 被引量:2
标识
DOI:10.1111/jdv.20306
摘要

Abstract Background Vulvar lichen sclerosus (VLS) is a chronic inflammatory skin condition associated with significant impairment of quality of life and potential risk of malignant transformation. However, diagnosis of VLS is often delayed due to its variable clinical presentation and shame‐related late consultation. Machine learning (ML)‐trained image recognition software could potentially facilitate early diagnosis of VLS. Objective To develop a ML‐trained image‐based model for the detection of VLS. Methods Images of both VLS and non‐VLS anogenital skin were collected, anonymized, and selected. In the VLS images, 10 typical skin signs (whitening, hyperkeratosis, purpura/ecchymosis, erosion/ulcers/excoriation, erythema, labial fusion, narrowing of the introitus, labia minora resorption, posterior commissure (fourchette) band formation and atrophic shiny skin) were manually labelled. A deep convolutional neural network was built using the training set as input data and then evaluated using the test set, where the developed algorithm was run three times and the results were then averaged. Results A total of 684 VLS images and 403 non‐VLS images (70% healthy vulva and 30% with other vulvar diseases) were included after the selection process. A deep learning algorithm was developed by training on 775 images (469 VLS and 306 non‐VLS) and testing on 312 images (215 VLS and 97 non‐VLS). This algorithm performed accurately in discriminating between VLS and non‐VLS cases (including healthy individuals and non‐VLS dermatoses), with mean values of 0.94, 0.99 and 0.95 for recall, precision and accuracy, respectively. Conclusions This pilot project demonstrated that our image‐based deep learning model can effectively discriminate between VLS and non‐VLS skin, representing a promising tool for future use by clinicians and possibly patients. However, prospective studies are needed to validate the applicability and accuracy of our model in a real‐world setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助123123采纳,获得10
刚刚
111发布了新的文献求助10
刚刚
1秒前
玖爱完成签到,获得积分10
1秒前
坦率灵槐应助冬虫夏草采纳,获得10
1秒前
koly完成签到 ,获得积分10
1秒前
2秒前
2秒前
直率凝丝完成签到,获得积分10
2秒前
文龙完成签到 ,获得积分10
3秒前
3秒前
zhenghongdan发布了新的文献求助10
4秒前
4秒前
4秒前
平常听兰发布了新的文献求助20
5秒前
Aha完成签到,获得积分10
5秒前
5秒前
dyd完成签到,获得积分10
5秒前
Cynthia完成签到 ,获得积分10
6秒前
smt完成签到,获得积分20
6秒前
432完成签到,获得积分10
6秒前
zhangyimg发布了新的文献求助10
7秒前
7秒前
8秒前
阳光寻菡发布了新的文献求助10
8秒前
huizhao发布了新的文献求助10
8秒前
8秒前
Journey完成签到,获得积分10
9秒前
天天快乐应助大力蚂蚁采纳,获得10
9秒前
9秒前
9秒前
10秒前
永康发布了新的文献求助10
10秒前
123完成签到,获得积分10
10秒前
10秒前
11秒前
yzr01完成签到 ,获得积分10
11秒前
专注德地发布了新的文献求助10
11秒前
11秒前
草莓小牛奶完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277