AI‐powered visual diagnosis of vulvar lichen sclerosus: A pilot study

医学 小阴唇 人工智能 皮肤病科 外阴 计算机科学
作者
Philippe Gottfrois,Jie Zhu,Alexandra Steiger,Ludovic Amruthalingam,André B. Kind,Viola Heinzelmann,C. Mang,Alexander A. Navarini,Simon M. Mueller
出处
期刊:Journal of The European Academy of Dermatology and Venereology [Wiley]
被引量:1
标识
DOI:10.1111/jdv.20306
摘要

Abstract Background Vulvar lichen sclerosus (VLS) is a chronic inflammatory skin condition associated with significant impairment of quality of life and potential risk of malignant transformation. However, diagnosis of VLS is often delayed due to its variable clinical presentation and shame‐related late consultation. Machine learning (ML)‐trained image recognition software could potentially facilitate early diagnosis of VLS. Objective To develop a ML‐trained image‐based model for the detection of VLS. Methods Images of both VLS and non‐VLS anogenital skin were collected, anonymized, and selected. In the VLS images, 10 typical skin signs (whitening, hyperkeratosis, purpura/ecchymosis, erosion/ulcers/excoriation, erythema, labial fusion, narrowing of the introitus, labia minora resorption, posterior commissure (fourchette) band formation and atrophic shiny skin) were manually labelled. A deep convolutional neural network was built using the training set as input data and then evaluated using the test set, where the developed algorithm was run three times and the results were then averaged. Results A total of 684 VLS images and 403 non‐VLS images (70% healthy vulva and 30% with other vulvar diseases) were included after the selection process. A deep learning algorithm was developed by training on 775 images (469 VLS and 306 non‐VLS) and testing on 312 images (215 VLS and 97 non‐VLS). This algorithm performed accurately in discriminating between VLS and non‐VLS cases (including healthy individuals and non‐VLS dermatoses), with mean values of 0.94, 0.99 and 0.95 for recall, precision and accuracy, respectively. Conclusion This pilot project demonstrated that our image‐based deep learning model can effectively discriminate between VLS and non‐VLS skin, representing a promising tool for future use by clinicians and possibly patients. However, prospective studies are needed to validate the applicability and accuracy of our model in a real‐world setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
温药专完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
木仔发布了新的文献求助30
5秒前
丽英安发布了新的文献求助10
7秒前
7秒前
Sun完成签到,获得积分10
7秒前
7秒前
huang发布了新的文献求助10
8秒前
he完成签到 ,获得积分10
8秒前
Chenzhs完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
大樗发布了新的文献求助10
10秒前
领导范儿应助寂梦采纳,获得10
10秒前
凡人完成签到,获得积分10
12秒前
winki发布了新的文献求助10
12秒前
7anWing完成签到 ,获得积分10
13秒前
研友_5Zl9D8发布了新的文献求助10
14秒前
良辰应助文静野狼采纳,获得10
14秒前
博士后发布了新的文献求助10
17秒前
18秒前
烟花应助小胡采纳,获得10
20秒前
JamesPei应助六斤采纳,获得20
21秒前
wyw123完成签到,获得积分10
21秒前
22秒前
科目三应助开心的问儿采纳,获得10
23秒前
李爱国应助MPC采纳,获得10
23秒前
wxxsx发布了新的文献求助10
23秒前
博士后完成签到,获得积分10
23秒前
良辰应助文静野狼采纳,获得10
23秒前
25秒前
lyz666完成签到,获得积分10
27秒前
27秒前
AAAA完成签到,获得积分10
27秒前
CipherSage应助huang采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304435
求助须知:如何正确求助?哪些是违规求助? 2938356
关于积分的说明 8488527
捐赠科研通 2612858
什么是DOI,文献DOI怎么找? 1426905
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647376