清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel ensemble causal feature selection approach with mutual information and group fusion strategy for multi-label data

相互信息 计算机科学 人工智能 特征选择 机器学习 特征(语言学) 信息融合 群(周期表) 模式识别(心理学) 选择(遗传算法) 传感器融合 数据挖掘 哲学 语言学 化学 有机化学
作者
Yifeng Zheng,Xianlong Zeng,Wenjie Zhang,Baoya Wei,Wei Ren,David Qing
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
标识
DOI:10.1108/ijicc-04-2024-0144
摘要

Purpose As intelligent technology advances, practical applications often involve data with multiple labels. Therefore, multi-label feature selection methods have attracted much attention to extract valuable information. However, current methods tend to lack interpretability when evaluating the relationship between different types of variables without considering the potential causal relationship. Design/methodology/approach To address the above problems, we propose an ensemble causal feature selection method based on mutual information and group fusion strategy (CMIFS) for multi-label data. First, the causal relationship between labels and features is analyzed by local causal structure learning, respectively, to obtain a causal feature set. Second, we eliminate false positive features from the obtained feature set using mutual information to improve the feature subset reliability. Eventually, we employ a group fusion strategy to fuse the obtained feature subsets from multiple data sub-space to enhance the stability of the results. Findings Experimental comparisons are performed on six datasets to validate that our proposal can enhance the interpretation and robustness of the model compared with other methods in different metrics. Furthermore, the statistical analyses further validate the effectiveness of our approach. Originality/value The present study makes a noteworthy contribution to proposing a causal feature selection approach based on mutual information to obtain an approximate optimal feature subset for multi-label data. Additionally, our proposal adopts the group fusion strategy to guarantee the robustness of the obtained feature subset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
52秒前
miracle完成签到,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
Jim发布了新的文献求助10
1分钟前
BowieHuang应助miracle采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
xwy关注了科研通微信公众号
2分钟前
2分钟前
mickaqi完成签到 ,获得积分10
2分钟前
tt完成签到,获得积分10
2分钟前
xwy发布了新的文献求助10
2分钟前
神秘猎牛人应助乐观之瑶采纳,获得10
2分钟前
冉亦完成签到,获得积分10
2分钟前
星际舟完成签到,获得积分10
2分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
十七岁男高中生完成签到 ,获得积分10
3分钟前
Hazel完成签到,获得积分20
3分钟前
3分钟前
Hazel发布了新的文献求助10
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
zly完成签到 ,获得积分10
5分钟前
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
隐形曼青应助科研通管家采纳,获得10
5分钟前
神秘猎牛人应助daizao采纳,获得10
5分钟前
鲑鱼完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
外星人发布了新的文献求助10
6分钟前
7分钟前
SciGPT应助Kashing采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538845
求助须知:如何正确求助?哪些是违规求助? 4625835
关于积分的说明 14596950
捐赠科研通 4566541
什么是DOI,文献DOI怎么找? 2503357
邀请新用户注册赠送积分活动 1481421
关于科研通互助平台的介绍 1452856