A novel ensemble causal feature selection approach with mutual information and group fusion strategy for multi-label data

相互信息 计算机科学 人工智能 特征选择 机器学习 特征(语言学) 信息融合 群(周期表) 模式识别(心理学) 选择(遗传算法) 传感器融合 数据挖掘 哲学 语言学 化学 有机化学
作者
Yifeng Zheng,Xianlong Zeng,Wenjie Zhang,Baoya Wei,Wei Ren,David Qing
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald Publishing Limited]
标识
DOI:10.1108/ijicc-04-2024-0144
摘要

Purpose As intelligent technology advances, practical applications often involve data with multiple labels. Therefore, multi-label feature selection methods have attracted much attention to extract valuable information. However, current methods tend to lack interpretability when evaluating the relationship between different types of variables without considering the potential causal relationship. Design/methodology/approach To address the above problems, we propose an ensemble causal feature selection method based on mutual information and group fusion strategy (CMIFS) for multi-label data. First, the causal relationship between labels and features is analyzed by local causal structure learning, respectively, to obtain a causal feature set. Second, we eliminate false positive features from the obtained feature set using mutual information to improve the feature subset reliability. Eventually, we employ a group fusion strategy to fuse the obtained feature subsets from multiple data sub-space to enhance the stability of the results. Findings Experimental comparisons are performed on six datasets to validate that our proposal can enhance the interpretation and robustness of the model compared with other methods in different metrics. Furthermore, the statistical analyses further validate the effectiveness of our approach. Originality/value The present study makes a noteworthy contribution to proposing a causal feature selection approach based on mutual information to obtain an approximate optimal feature subset for multi-label data. Additionally, our proposal adopts the group fusion strategy to guarantee the robustness of the obtained feature subset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南圆完成签到,获得积分10
刚刚
1秒前
1秒前
赤墨完成签到,获得积分10
1秒前
1秒前
烟花应助野葱采纳,获得10
2秒前
感动含双完成签到,获得积分10
2秒前
塵埃发布了新的文献求助10
3秒前
bbq完成签到,获得积分10
3秒前
852应助wind采纳,获得10
3秒前
3秒前
NexusExplorer应助故意的身影采纳,获得20
3秒前
3秒前
满意芯完成签到,获得积分10
5秒前
5秒前
小二郎应助随便采纳,获得10
5秒前
三块石头发布了新的文献求助10
5秒前
6秒前
感动煎饼完成签到,获得积分10
6秒前
7秒前
所所应助研友_n0kYwL采纳,获得10
8秒前
小蘑菇应助bbq采纳,获得10
8秒前
LSW完成签到,获得积分10
8秒前
8秒前
9秒前
吹吹蒲公英完成签到,获得积分10
9秒前
感动煎饼发布了新的文献求助10
10秒前
张婷婷完成签到,获得积分10
10秒前
路飞应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
kingwill应助科研通管家采纳,获得20
11秒前
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
醒醒应助科研通管家采纳,获得10
11秒前
wu8577应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得30
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
a31256246511发布了新的文献求助10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306