A novel ensemble causal feature selection approach with mutual information and group fusion strategy for multi-label data

相互信息 计算机科学 人工智能 特征选择 机器学习 特征(语言学) 信息融合 群(周期表) 模式识别(心理学) 选择(遗传算法) 传感器融合 数据挖掘 语言学 哲学 有机化学 化学
作者
Yifeng Zheng,Xianlong Zeng,Wenjie Zhang,Baoya Wei,Wei Ren,David Qing
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
标识
DOI:10.1108/ijicc-04-2024-0144
摘要

Purpose As intelligent technology advances, practical applications often involve data with multiple labels. Therefore, multi-label feature selection methods have attracted much attention to extract valuable information. However, current methods tend to lack interpretability when evaluating the relationship between different types of variables without considering the potential causal relationship. Design/methodology/approach To address the above problems, we propose an ensemble causal feature selection method based on mutual information and group fusion strategy (CMIFS) for multi-label data. First, the causal relationship between labels and features is analyzed by local causal structure learning, respectively, to obtain a causal feature set. Second, we eliminate false positive features from the obtained feature set using mutual information to improve the feature subset reliability. Eventually, we employ a group fusion strategy to fuse the obtained feature subsets from multiple data sub-space to enhance the stability of the results. Findings Experimental comparisons are performed on six datasets to validate that our proposal can enhance the interpretation and robustness of the model compared with other methods in different metrics. Furthermore, the statistical analyses further validate the effectiveness of our approach. Originality/value The present study makes a noteworthy contribution to proposing a causal feature selection approach based on mutual information to obtain an approximate optimal feature subset for multi-label data. Additionally, our proposal adopts the group fusion strategy to guarantee the robustness of the obtained feature subset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助祥子的骆驼采纳,获得10
1秒前
小高找文献完成签到,获得积分10
2秒前
5秒前
5秒前
Akim应助Jocelyn采纳,获得10
6秒前
songjin111111应助chao采纳,获得10
7秒前
qq发布了新的文献求助10
9秒前
深情安青应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
笑点低方盒发布了新的文献求助100
12秒前
科目三应助科研通管家采纳,获得10
12秒前
12秒前
15秒前
还没想好昵称完成签到,获得积分10
17秒前
18秒前
哈哈哈哈发布了新的文献求助10
20秒前
LUMO完成签到 ,获得积分10
20秒前
123完成签到 ,获得积分10
20秒前
loong发布了新的文献求助10
21秒前
在水一方应助羞涩的太阳采纳,获得10
26秒前
行走的鱼发布了新的文献求助10
27秒前
28秒前
更好的我完成签到,获得积分10
30秒前
33秒前
整齐的惮完成签到 ,获得积分10
34秒前
xhm完成签到 ,获得积分10
35秒前
图样图森破完成签到,获得积分10
36秒前
行走的鱼完成签到,获得积分10
37秒前
柒柒发布了新的文献求助10
42秒前
sk夏冰完成签到 ,获得积分10
42秒前
43秒前
43秒前
swayqur完成签到 ,获得积分10
43秒前
是微微发布了新的文献求助10
43秒前
47秒前
星空_发布了新的文献求助10
47秒前
好了没了完成签到,获得积分10
49秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057308
求助须知:如何正确求助?哪些是违规求助? 2713802
关于积分的说明 7437402
捐赠科研通 2358921
什么是DOI,文献DOI怎么找? 1249607
科研通“疑难数据库(出版商)”最低求助积分说明 607190
版权声明 596314