Medical diagnosis based on artificial intelligence and decision support system in the management of health development

临床决策支持系统 医学诊断 决策支持系统 审查 人工智能 计算机科学 机器学习 预测分析 分析 数据科学 知识管理 医学 病理 政治学 法学
作者
Kaipeng Chen,Lingjing Luo,Ye Tan,G. Chen
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
标识
DOI:10.1111/jep.14155
摘要

Abstract Background Medical diagnosis plays a critical role in our daily lives. Every day, over 10 billion cases of both mental and physical health disorders are diagnosed and reported worldwide. To diagnose these disorders, medical practitioners and health professionals employ various assessment tools. However, these tools often face scrutiny due to their complexity, prompting researchers to increase their experimental parameters to provide accurate justifications. Additionally, it is essential for professionals to properly justify, interpret, and analyse the results from these prediction tools. Methods This research paper explores the use of artificial intelligence and advanced analytics in developing Clinical Decision Support Systems (CDSS). These systems are capable of diagnosing and detecting patterns of various medical disorders. Various machine learning algorithms contribute to building these assessment tools, with the Network Pattern Recognition (NEPAR) algorithm being the first to aid in developing CDSS. Over time, researchers have recognised the value of machine learning‐based prediction models in successfully justifying medical diagnoses. Results The proposed CDSS models have demonstrated the ability to diagnose mental disorders with an accuracy of up to 89% using only 28 questions, without requiring human input. For physical health issues, additional parameters are used to enhance the accuracy of CDSS models. Conclusions Consequently, medical professionals are increasingly relying on these machine learning‐based CDSS models, utilising these tools to improve medical diagnosis and assist in decision‐making. The different cross‐validation values are considered to remove the data biasness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然秋柳发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
1秒前
nhzz2023完成签到 ,获得积分0
1秒前
2秒前
2秒前
TTOM发布了新的文献求助10
2秒前
3秒前
zhangling发布了新的文献求助10
4秒前
酷波er应助专注寻菱采纳,获得10
4秒前
5秒前
oops完成签到,获得积分10
5秒前
宋兽兽发布了新的文献求助10
5秒前
阿水完成签到,获得积分10
5秒前
嗯呐发布了新的文献求助10
5秒前
adgfasdvz发布了新的文献求助10
6秒前
zmrright发布了新的文献求助10
6秒前
充电宝应助bofu采纳,获得10
6秒前
CodeCraft应助鹅米豆腐采纳,获得10
6秒前
volition完成签到,获得积分10
7秒前
7秒前
oops发布了新的文献求助10
8秒前
wealan发布了新的文献求助10
8秒前
8秒前
小二郎应助lq采纳,获得10
8秒前
经济完成签到,获得积分10
8秒前
江小霜发布了新的文献求助10
9秒前
李爱国应助zhangling采纳,获得10
10秒前
11秒前
背后飞柏发布了新的文献求助10
11秒前
12秒前
13秒前
李健应助bofu采纳,获得10
13秒前
lynne完成签到,获得积分10
14秒前
Swiftie完成签到 ,获得积分10
15秒前
可爱的函函应助背后飞柏采纳,获得30
15秒前
hopen发布了新的文献求助10
15秒前
十三发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160703
求助须知:如何正确求助?哪些是违规求助? 2811860
关于积分的说明 7893601
捐赠科研通 2470679
什么是DOI,文献DOI怎么找? 1315754
科研通“疑难数据库(出版商)”最低求助积分说明 630993
版权声明 602053