A gradient-based approach to fast and accurate head motion compensation in cone-beam CT

锥束ct 主管(地质) 补偿(心理学) 运动(物理) Cone(正式语言) 物理 计算机视觉 计算机科学 光学 人工智能 地质学 计算机断层摄影术 放射科 医学 算法 心理学 地貌学 精神分析
作者
Mareike Thies,F. Wagner,Noah Maul,Haijun Yu,Manuela Goldmann Meier,Linda-Sophie Schneider,Mingxuan Gu,Siyuan Mei,Lukas Folle,Alexander Preuhs,Michael Manhart,Andreas Maier
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3474250
摘要

Cone-beam computed tomography (CBCT) systems, with their flexibility, present a promising avenue for direct point-of-care medical imaging, particularly in critical scenarios such as acute stroke assessment. However, the integration of CBCT into clinical workflows faces challenges, primarily linked to long scan duration resulting in patient motion during scanning and leading to image quality degradation in the reconstructed volumes. This paper introduces a novel approach to CBCT motion estimation using a gradient-based optimization algorithm, which leverages generalized derivatives of the backprojection operator for cone-beam CT geometries. Building on that, a fully differentiable target function is formulated which grades the quality of the current motion estimate in reconstruction space. We drastically accelerate motion estimation yielding a 19-fold speed-up compared to existing methods. Additionally, we investigate the architecture of networks used for quality metric regression and propose predicting voxel-wise quality maps, favoring autoencoder-like architectures over contracting ones. This modification improves gradient flow, leading to more accurate motion estimation. The presented method is evaluated through realistic experiments on head anatomy. It achieves a reduction in reprojection error from an initial average of 3 mm to 0.61 mm after motion compensation and consistently demonstrates superior performance compared to existing approaches. The analytic Jacobian for the backprojection operation, which is at the core of the proposed method, is made publicly available. In summary, this paper contributes to the advancement of CBCT integration into clinical workflows by proposing a robust motion estimation approach that enhances efficiency and accuracy, addressing critical challenges in time-sensitive scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到,获得积分10
1秒前
隐形曼青应助xionggege采纳,获得10
3秒前
3秒前
SciGPT应助will采纳,获得10
3秒前
Maggie完成签到,获得积分10
3秒前
裴裴裴完成签到,获得积分10
3秒前
正能量完成签到 ,获得积分10
4秒前
浙江嘉兴完成签到,获得积分10
4秒前
赘婿应助魔幻的慕梅采纳,获得10
5秒前
6秒前
销户完成签到 ,获得积分10
6秒前
zfx发布了新的文献求助10
6秒前
CC完成签到 ,获得积分10
7秒前
完美世界应助饱满若灵采纳,获得10
7秒前
谦让大娘完成签到,获得积分10
7秒前
8秒前
gray2025完成签到,获得积分10
9秒前
9秒前
老肖发布了新的文献求助10
11秒前
小铭同学发布了新的文献求助10
12秒前
Tal完成签到,获得积分10
13秒前
xionggege完成签到,获得积分10
14秒前
yezilin完成签到,获得积分10
15秒前
18秒前
xuyang完成签到,获得积分10
18秒前
20秒前
20秒前
hxm发布了新的文献求助10
21秒前
明月曾经川岸去完成签到,获得积分10
21秒前
23秒前
何浏亮完成签到,获得积分10
23秒前
xuan发布了新的文献求助10
24秒前
可可完成签到,获得积分10
25秒前
玛丽发布了新的文献求助10
25秒前
25秒前
musong完成签到,获得积分10
26秒前
复杂的香菱完成签到,获得积分10
27秒前
28秒前
广予发布了新的文献求助10
28秒前
YY发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357304
求助须知:如何正确求助?哪些是违规求助? 2980799
关于积分的说明 8696190
捐赠科研通 2662452
什么是DOI,文献DOI怎么找? 1457856
科研通“疑难数据库(出版商)”最低求助积分说明 674902
邀请新用户注册赠送积分活动 665934