A gradient-based approach to fast and accurate head motion compensation in cone-beam CT

锥束ct 主管(地质) 补偿(心理学) 运动(物理) Cone(正式语言) 物理 计算机视觉 计算机科学 光学 人工智能 地质学 计算机断层摄影术 放射科 医学 算法 心理学 地貌学 精神分析
作者
Mareike Thies,F. Wagner,Noah Maul,Haijun Yu,Manuela Goldmann Meier,Linda-Sophie Schneider,Mingxuan Gu,Siyuan Mei,Lukas Folle,Alexander Preuhs,Michael Manhart,Andreas Maier
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3474250
摘要

Cone-beam computed tomography (CBCT) systems, with their flexibility, present a promising avenue for direct point-of-care medical imaging, particularly in critical scenarios such as acute stroke assessment. However, the integration of CBCT into clinical workflows faces challenges, primarily linked to long scan duration resulting in patient motion during scanning and leading to image quality degradation in the reconstructed volumes. This paper introduces a novel approach to CBCT motion estimation using a gradient-based optimization algorithm, which leverages generalized derivatives of the backprojection operator for cone-beam CT geometries. Building on that, a fully differentiable target function is formulated which grades the quality of the current motion estimate in reconstruction space. We drastically accelerate motion estimation yielding a 19-fold speed-up compared to existing methods. Additionally, we investigate the architecture of networks used for quality metric regression and propose predicting voxel-wise quality maps, favoring autoencoder-like architectures over contracting ones. This modification improves gradient flow, leading to more accurate motion estimation. The presented method is evaluated through realistic experiments on head anatomy. It achieves a reduction in reprojection error from an initial average of 3 mm to 0.61 mm after motion compensation and consistently demonstrates superior performance compared to existing approaches. The analytic Jacobian for the backprojection operation, which is at the core of the proposed method, is made publicly available. In summary, this paper contributes to the advancement of CBCT integration into clinical workflows by proposing a robust motion estimation approach that enhances efficiency and accuracy, addressing critical challenges in time-sensitive scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助爱学习的小迟采纳,获得10
1秒前
哭泣的映寒完成签到 ,获得积分10
1秒前
xls完成签到,获得积分10
1秒前
1秒前
故意的傲玉应助圈圈采纳,获得10
1秒前
2秒前
522完成签到,获得积分10
2秒前
2秒前
kbj发布了新的文献求助10
2秒前
3秒前
老西瓜发布了新的文献求助10
3秒前
人各有痣完成签到,获得积分10
3秒前
后知后觉发布了新的文献求助10
3秒前
xiaoxiao发布了新的文献求助30
3秒前
3秒前
4秒前
4秒前
英姑应助哈哈呀采纳,获得10
5秒前
5秒前
hurry完成签到,获得积分10
5秒前
Hungrylunch应助陈玉婷采纳,获得20
5秒前
领导范儿应助hu970采纳,获得10
6秒前
new_vision发布了新的文献求助10
6秒前
拼搏翠桃完成签到,获得积分10
7秒前
糖糖科研顺利呀完成签到 ,获得积分10
7秒前
7秒前
阿秋完成签到,获得积分10
7秒前
Pangsj发布了新的文献求助10
8秒前
hhh发布了新的文献求助10
8秒前
好运藏在善良里完成签到,获得积分10
8秒前
情怀应助奋斗映寒采纳,获得10
8秒前
9秒前
CodeCraft应助牧海冬采纳,获得10
9秒前
zxcv23完成签到,获得积分10
9秒前
10秒前
小离发布了新的文献求助10
10秒前
yug完成签到,获得积分10
10秒前
坟里唱情歌完成签到 ,获得积分10
11秒前
kbj完成签到,获得积分10
11秒前
哈哈哈哈完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672