New Quality Productivity and Industrial Structure in China: The Moderating Effect of Environmental Regulation

生产力 中国 质量(理念) 业务 索引(排版) 全要素生产率 计量经济学 环境经济学 经济 计算机科学 经济增长 地理 万维网 认识论 哲学 考古
作者
Changhua Shao,Han Dong,Yuan Gao
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (16): 6796-6796 被引量:15
标识
DOI:10.3390/su16166796
摘要

To explore the connotation and development level of China’s new quality productivity, this paper constructs an index system based on innovation, greenness, and productivity. This system is used to describe the development level of China’s new quality productivity. Using relevant data from 30 provincial administrative regions in China from 2011 to 2021, the entropy weight-TOPSIS method was employed to measure the index system. The development level of new quality productivity in China and its four major economic regions was analyzed through the three dimensions of the index system. Additionally, this paper examines the impact of new quality productivity on China’s industrial restructuring and integrates environmental regulation to elucidate the interaction mechanisms among these factors. An econometric regression model is further constructed to verify the effect of new quality productivity on industrial structural change and to examine the moderating role of environmental regulation. The results of this study show that there is a regional imbalance in the level of development of new quality production in China, with the level of development of new quality productivity in the eastern region being significantly higher than that in the central, western, and northeastern regions. However, on the whole, the new quality productivity of the four major regions has been in a state of continuous improvement during the period under investigation, and the spatial gap has been constantly decreasing. The benchmark regression coefficients, sys-GMM regression coefficients, and diff-GMM regression coefficients for new quality productivity and industrial rationalization are −0.6228, −0.1121, and −0.0439, respectively, and they are negatively correlated. The regression coefficients of the sys-GMM and diff-GMM of the interaction terms of environmental regulation and new quality productivity are −0.0051 and −0.0045, and there is a negative moderating effect of environmental regulation between new quality productivity and industrial structure rationalization. The benchmark regression coefficient, the sys-GMM regression coefficient, and the diff-GMM regression coefficient of new quality productivity and industrial upgrading are 2.5179, 0.7525, and 0.3572, respectively, and there is a positive correlation between the two. The regression coefficients of sys-GMM and diff-GMM for the interaction terms of environmental regulation and new quality productivity are 0.0380 and −0.0167, and there is a positive moderating effect of environmental regulation between new quality productivity and industrial structure upgrading.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yannis完成签到 ,获得积分10
刚刚
1秒前
12345完成签到,获得积分10
1秒前
1秒前
1秒前
rrrrrrry发布了新的文献求助10
2秒前
2秒前
Z丶发布了新的文献求助10
2秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
今后应助艾丽采纳,获得10
4秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
zhonglv7应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助眠羊采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
zhonglv7应助科研通管家采纳,获得10
6秒前
星辰大海应助ZZP27采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得30
6秒前
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720392
求助须知:如何正确求助?哪些是违规求助? 5259964
关于积分的说明 15291027
捐赠科研通 4869813
什么是DOI,文献DOI怎么找? 2615036
邀请新用户注册赠送积分活动 1565022
关于科研通互助平台的介绍 1522160