Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data

医学 乳腺癌 无线电技术 腋窝淋巴结清扫术 解剖(医学) 新辅助治疗 放射科 淋巴结 肿瘤科 癌症 内科学 前哨淋巴结
作者
Yushuai Yu,Ruiliang Chen,Jialu Yi,Kaiyan Huang,Xin Yu,Jie Zhang,Chuangui Song
出处
期刊:The Breast [Elsevier BV]
卷期号:77: 103786-103786 被引量:2
标识
DOI:10.1016/j.breast.2024.103786
摘要

PurposeIn breast cancer (BC) patients with clinical axillary lymph node metastasis (cN+) undergoing neoadjuvant therapy (NAT), precise axillary lymph node (ALN) assessment dictates therapeutic strategy. There is a critical demand for a precise method to assess the axillary lymph node (ALN) status in these patients.Materials and methodsA retrospective analysis was conducted on 160 BC patients undergoing NAT at Fujian Medical University Union Hospital. We analyzed baseline and two-cycle reassessment dynamic contrast-enhanced MRI (DCE-MRI) images, extracting 3668 radiomic and 4096 deep learning features, and computing 1834 delta-radiomic and 2048 delta-deep learning features. Light Gradient Boosting Machine (LightGBM), Support Vector Machine (SVM), RandomForest, and Multilayer Perceptron (MLP) algorithms were employed to develop risk models and were evaluated using 10-fold cross-validation.ResultsOf the patients, 61 (38.13 %) achieved ypN0 status post-NAT. Univariate and multivariable logistic regression analyses revealed molecular subtypes and Ki67 as pivotal predictors of achieving ypN0 post-NAT. The SVM-based "Data Amalgamation" model that integrates radiomic, deep learning features, and clinical data, exhibited an outstanding AUC of 0.986 (95 % CI: 0.954–1.000), surpassing other models.ConclusionOur study illuminates the challenges and opportunities inherent in breast cancer management post-NAT. By introducing a sophisticated, SVM-based "Data Amalgamation" model, we propose a way towards accurate, dynamic ALN assessments, offering potential for personalized therapeutic strategies in BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默冬卉发布了新的文献求助30
刚刚
能干的雨发布了新的文献求助10
1秒前
2秒前
2秒前
汉堡包应助abletoo采纳,获得20
2秒前
初芷伊发布了新的文献求助10
3秒前
keyantong完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
lor发布了新的文献求助10
5秒前
xue发布了新的文献求助10
6秒前
来自三百发布了新的文献求助30
6秒前
搜集达人应助书生采纳,获得10
6秒前
7秒前
7秒前
9秒前
mingming发布了新的文献求助10
9秒前
打打应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
FIN应助科研通管家采纳,获得30
10秒前
风清扬应助科研通管家采纳,获得30
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
奥特超曼应助科研通管家采纳,获得20
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
努力发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
大模型应助科研通管家采纳,获得10
11秒前
Windsyang完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712