作者
Xiao-Jun Lin,Meng-Ting Chang,Min Cao,Muhammad Sohail,Meng Qiao,Xing Zhang
摘要
Traditional Fenton principles for degrading polysaccharides, including chondroitin sulfate (CS), are fraught with limitations, such as strict pH-dependence, higher temperature requirements, desulfurization, and environmentally perilous. In this study, an effective Fenton-like system comprising trimetallic-doped carbon nitride material (tri-CN) with hydrogen-bonded melamine-cyanuric acid (MCA) supramolecular aggregates as its basic skeleton was engineered to overcome the challenges of traditional methods. Detailed material characterizations revealed that, compared to monometallic-doped or bimetallic-doped counterparts, tri-CN offered a larger surface area, higher porosity, and increased metal loading, thereby enhancing reactant accessibility and polysaccharide degradation efficiency. The characterization and activity assessment of the degraded polysaccharide revealed structurally intact products without significant desulfurization, indicating the effectiveness of the designed approach. Moreover, the degraded chondroitin sulfate CS3 catalyzed by tri-CN, exhibited promising antioxidant activity and anti-CRISPR potential. The results elucidated that the high-valent iron species in the material served as primary active sites, catalyzing the cleavage of hydrogen peroxide to generate hydroxyl radicals that subsequently attacked CS chains, leading to their fragmentation. Hence, the designed material can be efficiently applied to polysaccharide degradation, but not limited to photocatalysis, electrocatalysis, sensor, energy storage materials, and wastewater treatment.