Prediction of non-muscle invasive bladder cancer recurrence using deep learning of pathology image

膀胱癌 病理 人工智能 医学 癌症 计算机科学 内科学
作者
Guangyue Wang,Jingfei Zhu,Qichao Wang,Jiaxin Qin,Xinlei Wang,Xing Liu,Xinyu Liu,Junzhi Chen,Jiefei Zhu,Shichao Zhuo,Di Wu,Na Li,Chao Liu,Fan-Lai Meng,Hao Lu,Zhenduo Shi,Zhi-Gang Jia,Conghui Han
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66870-9
摘要

We aimed to build a deep learning-based pathomics model to predict the early recurrence of non-muscle-infiltrating bladder cancer (NMIBC) in this work. A total of 147 patients from Xuzhou Central Hospital were enrolled as the training cohort, and 63 patients from Suqian Affiliated Hospital of Xuzhou Medical University were enrolled as the test cohort. Based on two consecutive phases of patch level prediction and WSI-level predictione, we built a pathomics model, with the initial model developed in the training cohort and subjected to transfer learning, and then the test cohort was validated for generalization. The features extracted from the visualization model were used for model interpretation. After migration learning, the area under the receiver operating characteristic curve for the deep learning-based pathomics model in the test cohort was 0.860 (95% CI 0.752-0.969), with good agreement between the migration training cohort and the test cohort in predicting recurrence, and the predicted values matched well with the observed values, with p values of 0.667766 and 0.140233 for the Hosmer-Lemeshow test, respectively. The good clinical application was observed using a decision curve analysis method. We developed a deep learning-based pathomics model showed promising performance in predicting recurrence within one year in NMIBC patients. Including 10 state prediction NMIBC recurrence group pathology features be visualized, which may be used to facilitate personalized management of NMIBC patients to avoid ineffective or unnecessary treatment for the benefit of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
九日完成签到,获得积分10
2秒前
khh完成签到 ,获得积分10
3秒前
nini完成签到,获得积分10
11秒前
13秒前
Catalina完成签到,获得积分10
13秒前
BruceCJH完成签到,获得积分10
14秒前
彭于晏应助笨鸟一直飞采纳,获得10
16秒前
优秀剑愁完成签到 ,获得积分10
16秒前
无奈的问安完成签到,获得积分10
18秒前
18秒前
安逸1发布了新的文献求助10
19秒前
蛋黄苏发布了新的文献求助10
20秒前
21秒前
二二完成签到 ,获得积分10
22秒前
只道寻常完成签到 ,获得积分10
23秒前
田様应助安逸1采纳,获得10
24秒前
26秒前
27秒前
玻尿酸完成签到,获得积分10
27秒前
研友_VZG7GZ应助蛋黄苏采纳,获得10
31秒前
香蕉觅云应助GK采纳,获得10
31秒前
33秒前
35秒前
37秒前
郝宝真发布了新的文献求助10
38秒前
安逸1发布了新的文献求助10
40秒前
LYY完成签到,获得积分10
42秒前
亮仔完成签到,获得积分10
47秒前
48秒前
内向的小凡完成签到,获得积分10
48秒前
半夏完成签到,获得积分10
49秒前
49秒前
50秒前
安逸1发布了新的文献求助10
52秒前
墨倾池发布了新的文献求助10
52秒前
缥缈的芷卉完成签到,获得积分20
52秒前
向雅完成签到,获得积分10
54秒前
GK发布了新的文献求助10
54秒前
感性的夜玉完成签到,获得积分10
56秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165504
求助须知:如何正确求助?哪些是违规求助? 2816567
关于积分的说明 7913125
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388