Prediction of non-muscle invasive bladder cancer recurrence using deep learning of pathology image

膀胱癌 病理 人工智能 医学 癌症 计算机科学 内科学
作者
Guangyue Wang,Jingfei Zhu,Qichao Wang,Jiaxin Qin,Xinlei Wang,Xing Liu,Xinyu Liu,Junzhi Chen,Jiefei Zhu,Shichao Zhuo,Di Wu,Na Li,Chao Liu,Fan-Lai Meng,Hao Lu,Zhenduo Shi,Zhi-Gang Jia,Conghui Han
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66870-9
摘要

We aimed to build a deep learning-based pathomics model to predict the early recurrence of non-muscle-infiltrating bladder cancer (NMIBC) in this work. A total of 147 patients from Xuzhou Central Hospital were enrolled as the training cohort, and 63 patients from Suqian Affiliated Hospital of Xuzhou Medical University were enrolled as the test cohort. Based on two consecutive phases of patch level prediction and WSI-level predictione, we built a pathomics model, with the initial model developed in the training cohort and subjected to transfer learning, and then the test cohort was validated for generalization. The features extracted from the visualization model were used for model interpretation. After migration learning, the area under the receiver operating characteristic curve for the deep learning-based pathomics model in the test cohort was 0.860 (95% CI 0.752-0.969), with good agreement between the migration training cohort and the test cohort in predicting recurrence, and the predicted values matched well with the observed values, with p values of 0.667766 and 0.140233 for the Hosmer-Lemeshow test, respectively. The good clinical application was observed using a decision curve analysis method. We developed a deep learning-based pathomics model showed promising performance in predicting recurrence within one year in NMIBC patients. Including 10 state prediction NMIBC recurrence group pathology features be visualized, which may be used to facilitate personalized management of NMIBC patients to avoid ineffective or unnecessary treatment for the benefit of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助不想长大采纳,获得50
刚刚
echo完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
李小舞完成签到,获得积分10
2秒前
alkdwx发布了新的文献求助10
2秒前
2秒前
2秒前
航1发布了新的文献求助10
2秒前
WendyWen完成签到,获得积分10
2秒前
丘比特应助风清扬采纳,获得10
3秒前
荷属安发布了新的文献求助10
3秒前
A溶大美噶完成签到,获得积分10
3秒前
3秒前
酒酿莓莓完成签到 ,获得积分10
3秒前
4秒前
4秒前
汉堡包应助cxz采纳,获得10
4秒前
Jasper应助董吧啦采纳,获得10
4秒前
朱旭完成签到,获得积分20
4秒前
5秒前
gu123完成签到,获得积分10
6秒前
7秒前
tricky发布了新的文献求助10
7秒前
坠儿狼发布了新的文献求助10
7秒前
丘比特应助大头麦穗鱼采纳,获得10
7秒前
彭于晏应助prof.zhang采纳,获得10
7秒前
浮游应助alkdwx采纳,获得10
7秒前
NexusExplorer应助alkdwx采纳,获得10
7秒前
昵称发布了新的文献求助10
7秒前
雷雷发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
庞伟泽发布了新的文献求助10
9秒前
云墨发布了新的文献求助10
9秒前
超浓抹茶椰完成签到,获得积分10
9秒前
10秒前
赵家慧完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193179
求助须知:如何正确求助?哪些是违规求助? 4375858
关于积分的说明 13627334
捐赠科研通 4230610
什么是DOI,文献DOI怎么找? 2320518
邀请新用户注册赠送积分活动 1318864
关于科研通互助平台的介绍 1269183