Prediction of non-muscle invasive bladder cancer recurrence using deep learning of pathology image

膀胱癌 病理 人工智能 医学 癌症 计算机科学 内科学
作者
Guangyue Wang,Jingfei Zhu,Qichao Wang,Jiaxin Qin,Xinlei Wang,Xing Liu,Xinyu Liu,Junzhi Chen,Jiefei Zhu,Shichao Zhuo,Di Wu,Na Li,Chao Liu,Fan-Lai Meng,Hao Lu,Zhenduo Shi,Zhi-Gang Jia,Conghui Han
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66870-9
摘要

We aimed to build a deep learning-based pathomics model to predict the early recurrence of non-muscle-infiltrating bladder cancer (NMIBC) in this work. A total of 147 patients from Xuzhou Central Hospital were enrolled as the training cohort, and 63 patients from Suqian Affiliated Hospital of Xuzhou Medical University were enrolled as the test cohort. Based on two consecutive phases of patch level prediction and WSI-level predictione, we built a pathomics model, with the initial model developed in the training cohort and subjected to transfer learning, and then the test cohort was validated for generalization. The features extracted from the visualization model were used for model interpretation. After migration learning, the area under the receiver operating characteristic curve for the deep learning-based pathomics model in the test cohort was 0.860 (95% CI 0.752-0.969), with good agreement between the migration training cohort and the test cohort in predicting recurrence, and the predicted values matched well with the observed values, with p values of 0.667766 and 0.140233 for the Hosmer-Lemeshow test, respectively. The good clinical application was observed using a decision curve analysis method. We developed a deep learning-based pathomics model showed promising performance in predicting recurrence within one year in NMIBC patients. Including 10 state prediction NMIBC recurrence group pathology features be visualized, which may be used to facilitate personalized management of NMIBC patients to avoid ineffective or unnecessary treatment for the benefit of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7z发布了新的文献求助10
刚刚
佟语雪完成签到,获得积分10
1秒前
Owen应助迷你的冰巧采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
安澜应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
hihihihi完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
JWKim完成签到,获得积分10
2秒前
木木 12完成签到,获得积分10
3秒前
TAO发布了新的文献求助10
3秒前
wanci应助小螃蟹采纳,获得10
3秒前
fang20130608完成签到,获得积分10
3秒前
等待的花卷完成签到 ,获得积分10
4秒前
tigger完成签到,获得积分10
5秒前
愤怒的店员完成签到,获得积分10
5秒前
雪梨完成签到,获得积分10
5秒前
FashionBoy应助哈哈采纳,获得10
7秒前
一颗星发布了新的文献求助10
7秒前
7秒前
自然紫山完成签到,获得积分10
8秒前
淡淡的呆呆的完成签到 ,获得积分10
8秒前
7z完成签到,获得积分10
8秒前
SYLH应助修辛采纳,获得10
10秒前
彩虹马发布了新的文献求助10
10秒前
娜娜完成签到 ,获得积分10
10秒前
孟孟完成签到,获得积分20
10秒前
xixidong完成签到,获得积分10
10秒前
打打应助天乙采纳,获得10
10秒前
新明完成签到,获得积分10
11秒前
TAO完成签到,获得积分10
11秒前
文文完成签到,获得积分10
11秒前
大胖完成签到,获得积分10
11秒前
我一拳打树上完成签到,获得积分10
12秒前
汪爷爷完成签到,获得积分10
12秒前
风中的宛白完成签到,获得积分20
13秒前
要不要减肥完成签到,获得积分10
13秒前
14秒前
逗逗完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259