亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of non-muscle invasive bladder cancer recurrence using deep learning of pathology image

膀胱癌 病理 人工智能 医学 癌症 计算机科学 内科学
作者
Guangyue Wang,Jingfei Zhu,Qichao Wang,Jiaxin Qin,Xinlei Wang,Xing Liu,Xinyu Liu,Junzhi Chen,Jiefei Zhu,Shichao Zhuo,Di Wu,Na Li,Chao Liu,Fan-Lai Meng,Hao Lu,Zhenduo Shi,Zhi-Gang Jia,Conghui Han
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66870-9
摘要

We aimed to build a deep learning-based pathomics model to predict the early recurrence of non-muscle-infiltrating bladder cancer (NMIBC) in this work. A total of 147 patients from Xuzhou Central Hospital were enrolled as the training cohort, and 63 patients from Suqian Affiliated Hospital of Xuzhou Medical University were enrolled as the test cohort. Based on two consecutive phases of patch level prediction and WSI-level predictione, we built a pathomics model, with the initial model developed in the training cohort and subjected to transfer learning, and then the test cohort was validated for generalization. The features extracted from the visualization model were used for model interpretation. After migration learning, the area under the receiver operating characteristic curve for the deep learning-based pathomics model in the test cohort was 0.860 (95% CI 0.752-0.969), with good agreement between the migration training cohort and the test cohort in predicting recurrence, and the predicted values matched well with the observed values, with p values of 0.667766 and 0.140233 for the Hosmer-Lemeshow test, respectively. The good clinical application was observed using a decision curve analysis method. We developed a deep learning-based pathomics model showed promising performance in predicting recurrence within one year in NMIBC patients. Including 10 state prediction NMIBC recurrence group pathology features be visualized, which may be used to facilitate personalized management of NMIBC patients to avoid ineffective or unnecessary treatment for the benefit of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助博ge采纳,获得10
刚刚
stardust发布了新的文献求助10
4秒前
7秒前
馆长应助科研通管家采纳,获得20
17秒前
丘比特应助科研通管家采纳,获得30
17秒前
FashionBoy应助queen采纳,获得30
19秒前
bkagyin应助CheetahAzure采纳,获得10
25秒前
彩虹儿应助吸尘器采纳,获得10
32秒前
41秒前
星沐易发布了新的文献求助10
41秒前
傲娇而又骄傲完成签到 ,获得积分10
49秒前
果冻橙完成签到,获得积分10
52秒前
饼干肥熊完成签到 ,获得积分10
55秒前
58秒前
1分钟前
1分钟前
上官若男应助CheetahAzure采纳,获得10
1分钟前
1分钟前
CheetahAzure发布了新的文献求助10
1分钟前
1分钟前
DPH完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
博ge发布了新的文献求助10
1分钟前
大胆楷瑞完成签到,获得积分20
1分钟前
1分钟前
1分钟前
大胆楷瑞发布了新的文献求助10
1分钟前
Unicorn完成签到,获得积分10
1分钟前
1分钟前
青柠完成签到 ,获得积分10
1分钟前
共享精神应助大胆楷瑞采纳,获得10
1分钟前
2分钟前
梦鱼完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
木有完成签到 ,获得积分10
2分钟前
2分钟前
追风少年完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4594910
求助须知:如何正确求助?哪些是违规求助? 4007539
关于积分的说明 12408163
捐赠科研通 3685935
什么是DOI,文献DOI怎么找? 2031557
邀请新用户注册赠送积分活动 1064815
科研通“疑难数据库(出版商)”最低求助积分说明 950145