亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PCGmix: A Data-Augmentation Method For Heart-Sound Classification

计算机科学 声音(地理) 人工智能 语音识别 模式识别(心理学) 声学 物理
作者
David Susič,Anton Gradišek,Matjaž Gams
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3458430
摘要

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, responsible for 32% of all deaths, with the annual death toll projected to reach 23.3 million by 2030. The early identification of individuals at high risk of CVD is crucial for the effectiveness of preventive strategies. In the field of deep learning, automated CVD-detection methods have gained traction, with phonocardiogram (PCG) data emerging as a valuable resource. However, deep-learning models rely on large datasets, which are often challenging to obtain. In recent years, data augmentation has become a viable solution to the problem of scarce data. In this paper, we propose a novel data-augmentation technique named PCGmix, specifically engineered for the augmentation of PCG data. The PCGmix algorithm employs a process of segmenting and reassembling PCG recordings, incorporating meticulous interpolation to ensure the preservation of the cardinal diagnostic features pertinent to CVD detection. The empirical assessment of the PCGmix method was utilized on a publicly available database of normal and abnormal heart-sound recordings. To evaluate the impact of data augmentation across a range of dataset sizes, we conducted experiments encompassing both limited and extensive amounts of training data. The experimental results demonstrate that the novel method is superior to the compared state-of-the-art, time-series augmentation. Notably, on limited data, our method achieves comparable accuracy to the no-augmentation approach when trained on 31% to 69% larger datasets. This study suggests that PCGmix can enhance the accuracy of deep-learning models for CVD detection, especially in data-constrained environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江彪发布了新的文献求助10
2秒前
江彪完成签到,获得积分10
15秒前
Marciu33完成签到,获得积分10
21秒前
健壮的花瓣完成签到 ,获得积分10
35秒前
Rinsana完成签到,获得积分10
37秒前
37秒前
在水一方应助科研通管家采纳,获得30
38秒前
小二郎应助科研通管家采纳,获得10
38秒前
41秒前
橓顺发布了新的文献求助10
43秒前
小王发布了新的文献求助10
48秒前
luca应助橓顺采纳,获得10
51秒前
和谐的忻完成签到,获得积分10
53秒前
56秒前
和谐的忻发布了新的文献求助20
56秒前
WerWu完成签到,获得积分10
1分钟前
1分钟前
拂晓驳回了慕青应助
1分钟前
开朗若雁发布了新的文献求助10
1分钟前
L_MD完成签到,获得积分10
1分钟前
1分钟前
1分钟前
拂晓发布了新的文献求助20
1分钟前
1分钟前
充实余生发布了新的文献求助10
1分钟前
sytbb发布了新的文献求助10
1分钟前
1分钟前
YANG发布了新的文献求助10
1分钟前
Owen应助拂晓采纳,获得20
1分钟前
sytbb完成签到,获得积分10
1分钟前
星辰大海应助YANG采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得20
2分钟前
2分钟前
酷酷涫完成签到 ,获得积分0
2分钟前
贪玩航空发布了新的文献求助10
2分钟前
丘比特应助dd大大采纳,获得10
3分钟前
贪玩航空完成签到,获得积分20
3分钟前
3分钟前
123468789521发布了新的文献求助30
3分钟前
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
How to Mind Map: The Ultimate Thinking Tool That Will Change Your Life 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700099
求助须知:如何正确求助?哪些是违规求助? 3250526
关于积分的说明 9869392
捐赠科研通 2962357
什么是DOI,文献DOI怎么找? 1624605
邀请新用户注册赠送积分活动 769447
科研通“疑难数据库(出版商)”最低求助积分说明 742247