材料科学
阳极
纳米技术
钝化
电解质
锂(药物)
阴极
快离子导体
储能
电池(电)
电化学
工程物理
电极
图层(电子)
电气工程
医学
功率(物理)
化学
物理
物理化学
量子力学
内分泌学
工程类
作者
Zhikang Deng,Shiming Chen,Kai Yang,Yongli Song,Shida Xue,Xiangming Yao,Luyi Yang,Feng Pan
标识
DOI:10.1002/adma.202407923
摘要
Abstract Solid‐state lithium‐ion batteries (SSLIBs) have been considered as the priority candidate for next‐generation energy storage system, due to their advantages in safety and energy density compare with conventional liquid electrolyte systems. However, the introduction of numerous solid‐solid interfaces results in a series of issues, hindering the further development of SSLIBs. Therefore, a thorough understanding on the interfacial issues is essential to promote the practical applications for SSLIBs. In this review, the interface issues are discussed from the perspective of transportation mechanism of electrons and lithium ions, including internal interfaces within cathode/anode composites and solid electrolytes (SEs), as well as the apparent electrode/SEs interfaces. The corresponding interface modification strategies, such as passivation layer design, conductive binders, and thermal sintering methods, are comprehensively summarized. Through establishing the correlation between carrier transport network and corresponding battery electrochemical performance, the design principles for achieving a selective carrier transport network are systematically elucidated. Additionally, the future challenges are speculated and research directions in tailoring interfacial structure for SSLIBs. By providing the insightful review and outlook on interfacial charge transfer, the industrialization of SSLIBs are aimed to promoted.
科研通智能强力驱动
Strongly Powered by AbleSci AI