TransTLA: A Transfer Learning Approach with TCN-LSTM-Attention for Household Appliance Sales Forecasting in Small Towns

计算机科学 稀缺 卷积神经网络 利用 学习迁移 人工智能 订单(交换) 深度学习 销售预测 需求预测 机器学习 特大城市 传输(计算) 营销 业务 经济 财务 微观经济学 经济 并行计算 计算机安全
作者
Zhijie Huang,Jianfeng Liu
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (15): 6611-6611
标识
DOI:10.3390/app14156611
摘要

Deep learning (DL) has been widely applied to forecast the sales volume of household appliances with high accuracy. Unfortunately, in small towns, due to the limited amount of historical sales data, it is difficult to forecast household appliance sales accurately. To overcome the above-mentioned challenge, we propose a novel household appliance sales forecasting algorithm based on transfer learning, temporal convolutional network (TCN), long short-term memory (LSTM), and attention mechanism (called “TransTLA”). Firstly, we combine TCN and LSTM to exploit the spatiotemporal correlation of sales data. Secondly, we utilize the attention mechanism to make full use of the features of sales data. Finally, in order to mitigate the impact of data scarcity and regional differences, a transfer learning technique is used to improve the predictive performance in small towns, with the help of the learning experience from the megacity. The experimental outcomes reveal that the proposed TransTLA model significantly outperforms traditional forecasting methods in predicting small town household appliance sales volumes. Specifically, TransTLA achieves an average mean absolute error (MAE) improvement of 27.60% over LSTM, 9.23% over convolutional neural networks (CNN), and 11.00% over the CNN-LSTM-Attention model across one to four step-ahead predictions. This study addresses the data scarcity problem in small town sales forecasting, helping businesses improve inventory management, enhance customer satisfaction, and contribute to a more efficient supply chain, benefiting the overall economy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助吃猫的鱼采纳,获得10
1秒前
1秒前
2秒前
ZH发布了新的文献求助10
3秒前
3秒前
3秒前
你好吗发布了新的文献求助10
3秒前
ZZ完成签到,获得积分10
4秒前
5秒前
AllenWalker发布了新的文献求助10
5秒前
陶一淘完成签到 ,获得积分10
7秒前
领导范儿应助笨笨chen采纳,获得10
7秒前
顾矜应助apple9515采纳,获得10
7秒前
wcdd发布了新的文献求助10
8秒前
猪皮恶人发布了新的文献求助10
8秒前
9秒前
角斗士完成签到,获得积分10
9秒前
yyy完成签到 ,获得积分10
10秒前
杰尼龟发布了新的文献求助10
11秒前
11秒前
11秒前
李健的粉丝团团长应助nn采纳,获得10
11秒前
北沐发布了新的文献求助10
12秒前
KKKZ完成签到,获得积分10
12秒前
赘婿应助123采纳,获得10
12秒前
13秒前
Juli关注了科研通微信公众号
13秒前
CipherSage应助淡淡冬瓜采纳,获得10
15秒前
xinxin发布了新的文献求助10
15秒前
LLLL完成签到,获得积分10
15秒前
wcdd完成签到,获得积分10
17秒前
形容发布了新的文献求助10
17秒前
wzk发布了新的文献求助10
17秒前
jiayuY完成签到 ,获得积分10
17秒前
yangyajie发布了新的文献求助10
18秒前
福尔摩曦发布了新的文献求助10
19秒前
居居应助开朗的寻桃采纳,获得10
21秒前
21秒前
SciGPT应助体育爱好者采纳,获得300
23秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154159
求助须知:如何正确求助?哪些是违规求助? 2805038
关于积分的说明 7863014
捐赠科研通 2463114
什么是DOI,文献DOI怎么找? 1311158
科研通“疑难数据库(出版商)”最低求助积分说明 629464
版权声明 601821