TransTLA: A Transfer Learning Approach with TCN-LSTM-Attention for Household Appliance Sales Forecasting in Small Towns

计算机科学 稀缺 卷积神经网络 利用 学习迁移 人工智能 订单(交换) 深度学习 销售预测 需求预测 机器学习 特大城市 传输(计算) 营销 业务 经济 财务 微观经济学 经济 并行计算 计算机安全
作者
Zhijie Huang,Jianfeng Liu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (15): 6611-6611 被引量:2
标识
DOI:10.3390/app14156611
摘要

Deep learning (DL) has been widely applied to forecast the sales volume of household appliances with high accuracy. Unfortunately, in small towns, due to the limited amount of historical sales data, it is difficult to forecast household appliance sales accurately. To overcome the above-mentioned challenge, we propose a novel household appliance sales forecasting algorithm based on transfer learning, temporal convolutional network (TCN), long short-term memory (LSTM), and attention mechanism (called “TransTLA”). Firstly, we combine TCN and LSTM to exploit the spatiotemporal correlation of sales data. Secondly, we utilize the attention mechanism to make full use of the features of sales data. Finally, in order to mitigate the impact of data scarcity and regional differences, a transfer learning technique is used to improve the predictive performance in small towns, with the help of the learning experience from the megacity. The experimental outcomes reveal that the proposed TransTLA model significantly outperforms traditional forecasting methods in predicting small town household appliance sales volumes. Specifically, TransTLA achieves an average mean absolute error (MAE) improvement of 27.60% over LSTM, 9.23% over convolutional neural networks (CNN), and 11.00% over the CNN-LSTM-Attention model across one to four step-ahead predictions. This study addresses the data scarcity problem in small town sales forecasting, helping businesses improve inventory management, enhance customer satisfaction, and contribute to a more efficient supply chain, benefiting the overall economy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaoxin发布了新的文献求助10
1秒前
1秒前
yuan1226完成签到,获得积分10
1秒前
平常的狗应助淡然绝山采纳,获得10
2秒前
蓝色白羊完成签到,获得积分10
2秒前
3秒前
嗯哼完成签到,获得积分10
5秒前
5秒前
ccyy完成签到 ,获得积分10
6秒前
KDS发布了新的文献求助10
6秒前
橙子加油发布了新的文献求助10
6秒前
7秒前
九千七发布了新的文献求助10
7秒前
故渊完成签到,获得积分10
7秒前
万能图书馆应助过氧化氢采纳,获得20
8秒前
yan完成签到,获得积分10
9秒前
黑黑黑发布了新的文献求助10
9秒前
万能图书馆应助环游水星采纳,获得10
9秒前
阿良完成签到,获得积分10
10秒前
Joe完成签到 ,获得积分10
10秒前
8564523完成签到,获得积分10
11秒前
dandan完成签到,获得积分10
11秒前
单薄的夜南应助Connie采纳,获得10
11秒前
啦啦啦完成签到,获得积分10
11秒前
12秒前
小马过河应助小汤圆采纳,获得10
12秒前
九千七完成签到,获得积分20
12秒前
皮划艇发布了新的文献求助30
12秒前
Firenze完成签到,获得积分20
13秒前
浪浪山第一酷完成签到,获得积分10
13秒前
Dr_R完成签到,获得积分10
13秒前
KDS完成签到,获得积分10
13秒前
14秒前
14秒前
domingo发布了新的文献求助20
15秒前
Cain发布了新的文献求助10
15秒前
小马甲应助车大花采纳,获得10
15秒前
15秒前
wwz发布了新的文献求助30
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650