Significantly enhanced dielectric properties of Ti3C2Tx MXene/MoS2/methylvinyl silicone rubber ternary composites by tuning the particle size of MoS2

材料科学 三元运算 复合材料 耗散因子 硅橡胶 介电损耗 电介质 纳米颗粒 天然橡胶 热稳定性 化学工程 纳米技术 光电子学 计算机科学 程序设计语言 工程类
作者
Yu Zeng,Lu Tang
出处
期刊:Polymer Engineering and Science [Wiley]
卷期号:64 (10): 5108-5119 被引量:1
标识
DOI:10.1002/pen.26905
摘要

Abstract To realize the great potential of silicone rubber in advanced electronics, high dielectric constant and low loss tangent are currently pursued. Adding a third phase to conductive filler/silicone rubber composites may enhance the properties of the composites, but the appropriate particle size of the third phase is an open question. Here, MoS 2 was used as the third phase to prepare the Ti 3 C 2 T x MXene/MoS 2 /methylvinyl silicone rubber (VMQ) ternary composites, and the influence of different sizes of MoS 2 (200 nm and 2 μm) on the dielectric performance of the composites was investigated. The dielectric constant of the Ti 3 C 2 T x MXene/VMQ composites with 5 wt% MoS 2 nanoparticles shows a 279% enhancement from 2.78 to 7.75 at 10 3 Hz, better than that of the Ti 3 C 2 T x MXene‐MoS 2 hybrid fillers/VMQ composites. Compared with micron MoS 2 , nano MoS 2 can significantly enhance the dielectric performance of conductive filler/polymer composites because of shorter interparticle distances and enhanced interfacial polarization. Meanwhile, the composites exhibit low loss tangent (lower than 0.0015) and good thermal stability (up to 400°C) because of the low filling amounts of Ti 3 C 2 T x MXene and MoS 2 nanoparticles. Excellent flexibility with Young's modulus of 285 kPa and elongations break of 446% was also obtained. The design of these ternary composites greatly improves the dielectric and mechanical properties, which means that the dielectric material has a broad application prospect in modern electronics industry. Highlights High dielectric constant was gained in Ti 3 C 2 T x MXene/5n‐MoS 2 /VMQ composites. The MXene/5n‐MoS 2 /VMQ composites exhibited excellent mechanical properties. Appropriate filler size can benefit the performance of polymer composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Rookie采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
1秒前
123完成签到,获得积分10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得30
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
生动觅荷应助科研通管家采纳,获得30
1秒前
思源应助科研通管家采纳,获得30
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
rengar完成签到,获得积分10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
邓佳鑫Alan应助科研通管家采纳,获得10
2秒前
asukaray应助silkloabkidmo采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
纪亦竹完成签到,获得积分20
2秒前
香蕉觅云应助科研通管家采纳,获得20
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
优雅老六发布了新的文献求助10
2秒前
2秒前
小v完成签到 ,获得积分10
2秒前
3秒前
敢敢发布了新的文献求助20
3秒前
wwrjj完成签到,获得积分10
3秒前
田様应助小安采纳,获得10
3秒前
W-水完成签到,获得积分10
3秒前
沐清风发布了新的文献求助10
4秒前
Attempter完成签到,获得积分10
4秒前
4秒前
5秒前
yoimiya完成签到,获得积分10
5秒前
符溪完成签到,获得积分20
5秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5119986
求助须知:如何正确求助?哪些是违规求助? 4325490
关于积分的说明 13476830
捐赠科研通 4158894
什么是DOI,文献DOI怎么找? 2279179
邀请新用户注册赠送积分活动 1281003
关于科研通互助平台的介绍 1219769