已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Single-Molecule Functional Chips: Unveiling the Full Potential of Molecular Electronics and Optoelectronics

分子电子学 数码产品 纳米技术 分子 材料科学 光电子学 物理 工程类 电气工程 量子力学
作者
Heng Zhang,Junhao Li,Chen Yang,Xuefeng Guo
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (8): 971-986 被引量:2
标识
DOI:10.1021/accountsmr.4c00125
摘要

ConspectusAn ideal methodology for miniaturizing the physical size, enhancing the operational frequency, and building the multifunctional capability of functional chips is to use opto- or electroactive single molecules as their central elements; such devices are generally termed single-molecule electronics and optoelectronics. The exploration of the electronic and optoelectronic properties of materials at the single-molecule level also allows the complete elucidation of the correlation between molecular structure and function, which in turn aids technological advances that can help to address the challenge raised by Moore's Law. In this Account, we present our ongoing investigative pursuits in the realm of single-molecule electronics and optoelectronics, with a particular emphasis on studies using graphene-molecule-graphene single-molecule junctions as the primary framework. To date, we have established a diverse range of single-molecule multifunctional devices, including photoswitches, field-effect transistors, rectifiers, light-emitting diodes, spin electronic devices, memristors, and molecular wires. These types of devices possess stable graphene electrodes and robust covalent molecule-electrode interfaces.The main focuses of this account are our proposed molecular/interface engineering strategy including interface design using particular linkers, spacers, insulation, and functional centers and our device engineering strategy that covers the design of the device structure and electrode materials. These strategies adequately consider the coupling between functional centers and their external environment, thus affording the ability to evaluate and manipulate the intrinsic behaviors of target molecules. Specifically, a covalent molecule-electrode interface enables high device stability at a high bias voltage. Three nonconjugated methylene groups are inserted at the electrode-molecule interface to prevent the quenching of the excited state of the central molecule (e.g., diarylethene) by the graphene electrode, thereby achieving robust and reversible photoswitches. Cyclodextrins are introduced as insulating groups around molecular bridges to weaken the coupling of the bridges with the environment, which increases the quantum yield of light-emitting diodes. Additional reactive sites are introduced on the sides of the molecular bridges, providing the ability to add new functional centers. We show that using materials with a high dielectric constant as the dielectric layer enables efficient electrical manipulations of single-molecule electronics and optoelectronics by the gate voltage. We reveal that the use of ferromagnetic metal electrodes in single-molecule electronics and optoelectronics can meet the requirements for spin injection. In particular, the two-dimensional structure of graphene electrodes that can be tailored by etching enables high-density integration of molecules, paving the way for future logical manipulation and real-time communication.These systematic investigations emphasize the importance of single-molecule electronics and optoelectronics for miniaturized device fabrication, intrinsic mechanism exploration, and advanced chip applications. Further interdisciplinary cooperative efforts, including micro- and nanoprocessing, organic synthesis, and theoretical calculation, will contribute to the rapid development of single-molecule electronics and optoelectronics that are suitable for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨青月完成签到,获得积分10
1秒前
3秒前
谢会会完成签到 ,获得积分10
4秒前
瓦罐汤完成签到 ,获得积分10
4秒前
狂野的含烟完成签到 ,获得积分10
6秒前
8秒前
墨言无殇完成签到 ,获得积分10
8秒前
HY发布了新的文献求助10
9秒前
wei jie完成签到 ,获得积分10
9秒前
楼翩跹完成签到 ,获得积分10
13秒前
mads完成签到 ,获得积分10
13秒前
自然秋双完成签到,获得积分10
14秒前
15秒前
lqy完成签到,获得积分20
15秒前
16秒前
xiongyh10完成签到,获得积分10
17秒前
kjding完成签到,获得积分10
18秒前
monair完成签到 ,获得积分10
18秒前
Demi_Ming完成签到,获得积分10
18秒前
Amikacin完成签到,获得积分10
19秒前
聪明凌柏完成签到 ,获得积分10
19秒前
19秒前
丸子鱼完成签到 ,获得积分10
19秒前
秋澄完成签到 ,获得积分10
20秒前
FFFFF完成签到 ,获得积分0
21秒前
wow发布了新的文献求助10
22秒前
还在考虑完成签到,获得积分10
22秒前
你好完成签到 ,获得积分0
22秒前
微笑的白柏完成签到,获得积分10
22秒前
江上游完成签到 ,获得积分10
23秒前
落寞书易完成签到 ,获得积分10
23秒前
23秒前
VDC应助亲爱的安德烈采纳,获得30
23秒前
小6s完成签到,获得积分10
24秒前
24秒前
24秒前
WXHL完成签到 ,获得积分10
24秒前
刻苦黎云完成签到,获得积分10
25秒前
旱田蜗牛发布了新的文献求助10
25秒前
beloved完成签到 ,获得积分10
26秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417367
求助须知:如何正确求助?哪些是违规求助? 3018968
关于积分的说明 8886200
捐赠科研通 2706496
什么是DOI,文献DOI怎么找? 1484311
科研通“疑难数据库(出版商)”最低求助积分说明 685955
邀请新用户注册赠送积分活动 681110