USCT-UNet: Rethinking the Semantic Gap in U-Net Network from U-shaped Skip Connections with Multichannel Fusion Transformer

变压器 融合 计算机科学 自然语言处理 人工智能 物理 语言学 电气工程 工程类 哲学 电压
作者
Xiaoshan Xie,Min Yang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2024.3468339
摘要

Medical image segmentation is a crucial component of computer-aided clinical diagnosis, with state-of-the-art models often being variants of U-Net. Despite their success, these models' skip connections introduce an unnecessary semantic gap between the encoder and decoder, which hinders their ability to achieve the high precision required for clinical applications. Awareness of this semantic gap and its detrimental influences have increased over time. However, a quantitative understanding of how this semantic gap compromises accuracy and reliability remains lacking, emphasizing the need for effective mitigation strategies. In response, we present the first quantitative evaluation of the semantic gap between corresponding layers of U-Net and identify two key characteristics: 1) The direct skip connection (DSC) exhibits a semantic gap that negatively impacts models' performance; 2) The magnitude of the semantic gap varies across different layers. Based on these findings, we re-examine this issue through the lens of skip connections. We introduce a Multichannel Fusion Transformer (MCFT) and propose a novel USCT-UNet architecture, which incorporates U-shaped skip connections (USC) to replace DSC, allocates varying numbers of MCFT blocks based on the semantic gap magnitude at different layers, and employs a spatial channel cross-attention (SCCA) module to facilitate the fusion of features between the decoder and USC. We evaluate USCT-UNet on four challenging datasets, and the results demonstrate that it effectively eliminates the semantic gap. Compared to using DSC, our USC and SCCA strategies achieve maximum improvements of 4.79% in the Dice coefficient, 5.70% in mean intersection over union (MIoU), and 3.26 in Hausdorff distance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dale发布了新的文献求助10
1秒前
3秒前
现代蘑菇发布了新的文献求助30
4秒前
6秒前
爱上多hi完成签到,获得积分10
6秒前
小容容完成签到,获得积分10
8秒前
luluyang完成签到 ,获得积分10
8秒前
浮游应助mofan采纳,获得10
8秒前
孙晓燕发布了新的文献求助10
9秒前
10秒前
kk完成签到 ,获得积分10
10秒前
11秒前
jjj完成签到,获得积分10
13秒前
研友_GZ3zRn完成签到 ,获得积分0
13秒前
13秒前
nenoaowu发布了新的文献求助30
17秒前
光亮的如松完成签到,获得积分20
17秒前
Cc发布了新的文献求助10
19秒前
19秒前
19秒前
21秒前
22秒前
23秒前
紫苏桃子关注了科研通微信公众号
24秒前
多多完成签到,获得积分10
24秒前
Hayat应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
25秒前
河豚素应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
guyue发布了新的文献求助10
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225665
求助须知:如何正确求助?哪些是违规求助? 4397339
关于积分的说明 13686262
捐赠科研通 4261822
什么是DOI,文献DOI怎么找? 2338760
邀请新用户注册赠送积分活动 1336137
关于科研通互助平台的介绍 1292067