USCT-UNet: Rethinking the Semantic Gap in U-Net Network from U-shaped Skip Connections with Multichannel Fusion Transformer

变压器 融合 计算机科学 自然语言处理 人工智能 物理 语言学 电气工程 工程类 哲学 电压
作者
Xiaoshan Xie,Min Yang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2024.3468339
摘要

Medical image segmentation is a crucial component of computer-aided clinical diagnosis, with state-of-the-art models often being variants of U-Net. Despite their success, these models' skip connections introduce an unnecessary semantic gap between the encoder and decoder, which hinders their ability to achieve the high precision required for clinical applications. Awareness of this semantic gap and its detrimental influences have increased over time. However, a quantitative understanding of how this semantic gap compromises accuracy and reliability remains lacking, emphasizing the need for effective mitigation strategies. In response, we present the first quantitative evaluation of the semantic gap between corresponding layers of U-Net and identify two key characteristics: 1) The direct skip connection (DSC) exhibits a semantic gap that negatively impacts models' performance; 2) The magnitude of the semantic gap varies across different layers. Based on these findings, we re-examine this issue through the lens of skip connections. We introduce a Multichannel Fusion Transformer (MCFT) and propose a novel USCT-UNet architecture, which incorporates U-shaped skip connections (USC) to replace DSC, allocates varying numbers of MCFT blocks based on the semantic gap magnitude at different layers, and employs a spatial channel cross-attention (SCCA) module to facilitate the fusion of features between the decoder and USC. We evaluate USCT-UNet on four challenging datasets, and the results demonstrate that it effectively eliminates the semantic gap. Compared to using DSC, our USC and SCCA strategies achieve maximum improvements of 4.79% in the Dice coefficient, 5.70% in mean intersection over union (MIoU), and 3.26 in Hausdorff distance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qc发布了新的文献求助10
刚刚
木沐发布了新的文献求助10
刚刚
Limerencia发布了新的文献求助200
2秒前
勤奋的白桃完成签到,获得积分10
2秒前
4秒前
Jaden发布了新的文献求助10
4秒前
wyy发布了新的文献求助10
5秒前
7秒前
田様应助传说奢华采纳,获得10
7秒前
8秒前
9秒前
大大发布了新的文献求助10
9秒前
BowieHuang应助zz采纳,获得10
9秒前
小七完成签到,获得积分20
9秒前
蓝天应助hechao101010采纳,获得10
9秒前
Criminology34应助镜中人采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
皮汶灵完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
宁静致远发布了新的文献求助10
11秒前
Owen应助小七采纳,获得20
12秒前
12秒前
yuyuyu完成签到,获得积分10
13秒前
rrrrrrry发布了新的文献求助10
15秒前
15秒前
夜枫发布了新的文献求助10
15秒前
桐桐应助cqz采纳,获得10
16秒前
yuyuyu发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
19秒前
李健的小迷弟应助yyy采纳,获得10
20秒前
21秒前
wyy完成签到 ,获得积分10
22秒前
哈哈哈哈发布了新的文献求助10
23秒前
李怼怼发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548