USCT-UNet: Rethinking the Semantic Gap in U-Net Network from U-shaped Skip Connections with Multichannel Fusion Transformer

变压器 融合 计算机科学 自然语言处理 人工智能 物理 语言学 电气工程 工程类 哲学 电压
作者
Xiaoshan Xie,Min Yang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2024.3468339
摘要

Medical image segmentation is a crucial component of computer-aided clinical diagnosis, with state-of-the-art models often being variants of U-Net. Despite their success, these models' skip connections introduce an unnecessary semantic gap between the encoder and decoder, which hinders their ability to achieve the high precision required for clinical applications. Awareness of this semantic gap and its detrimental influences have increased over time. However, a quantitative understanding of how this semantic gap compromises accuracy and reliability remains lacking, emphasizing the need for effective mitigation strategies. In response, we present the first quantitative evaluation of the semantic gap between corresponding layers of U-Net and identify two key characteristics: 1) The direct skip connection (DSC) exhibits a semantic gap that negatively impacts models' performance; 2) The magnitude of the semantic gap varies across different layers. Based on these findings, we re-examine this issue through the lens of skip connections. We introduce a Multichannel Fusion Transformer (MCFT) and propose a novel USCT-UNet architecture, which incorporates U-shaped skip connections (USC) to replace DSC, allocates varying numbers of MCFT blocks based on the semantic gap magnitude at different layers, and employs a spatial channel cross-attention (SCCA) module to facilitate the fusion of features between the decoder and USC. We evaluate USCT-UNet on four challenging datasets, and the results demonstrate that it effectively eliminates the semantic gap. Compared to using DSC, our USC and SCCA strategies achieve maximum improvements of 4.79% in the Dice coefficient, 5.70% in mean intersection over union (MIoU), and 3.26 in Hausdorff distance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Hosea采纳,获得10
刚刚
飞猪发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
云瑾应助科研通管家采纳,获得10
3秒前
HCLonely应助科研通管家采纳,获得10
3秒前
HCLonely应助科研通管家采纳,获得10
3秒前
舒服的远望完成签到,获得积分10
4秒前
bkagyin应助lvjiahui采纳,获得10
4秒前
华仔应助不知名的呆毛采纳,获得10
6秒前
Qing完成签到,获得积分10
6秒前
hj456完成签到,获得积分10
6秒前
Ricardo完成签到,获得积分10
7秒前
yyyyyyyyyy完成签到 ,获得积分10
8秒前
9秒前
纱夏完成签到,获得积分10
9秒前
11秒前
12秒前
111完成签到,获得积分10
12秒前
冬冬冬完成签到,获得积分20
12秒前
子车茗应助LL采纳,获得10
13秒前
13秒前
Peppermint完成签到,获得积分10
13秒前
13秒前
bkagyin应助包子采纳,获得10
14秒前
聪明的远锋完成签到,获得积分10
14秒前
15秒前
典雅睿渊完成签到,获得积分10
15秒前
16秒前
爆螺钉完成签到,获得积分10
16秒前
精明如雪发布了新的文献求助10
16秒前
情怀应助czp采纳,获得10
16秒前
17秒前
lvjiahui发布了新的文献求助10
17秒前
yoyocici1505完成签到,获得积分10
17秒前
CodeCraft应助Franky采纳,获得10
18秒前
小黑鲨发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221384
求助须知:如何正确求助?哪些是违规求助? 2870168
关于积分的说明 8169192
捐赠科研通 2536983
什么是DOI,文献DOI怎么找? 1369208
科研通“疑难数据库(出版商)”最低求助积分说明 645386
邀请新用户注册赠送积分活动 619051