Modeling protein-small molecule conformational ensembles with ChemNet

化学 统计物理学 物理
作者
Ivan Anishchenko,Yakov Kipnis,Indrek Kalvet,Guangfeng Zhou,Rohith Krishna,Samuel J. Pellock,Anna Lauko,Gyu Rie Lee,Linna An,Justas Dauparas,Frank DiMaio,David Baker
标识
DOI:10.1101/2024.09.25.614868
摘要

Modeling the conformational heterogeneity of protein-small molecule systems is an outstanding challenge. We reasoned that while residue level descriptions of biomolecules are efficient for de novo structure prediction, for probing heterogeneity of interactions with small molecules in the folded state an entirely atomic level description could have advantages in speed and generality. We developed a graph neural network called ChemNet trained to recapitulate correct atomic positions from partially corrupted input structures from the Cambridge Structural Database and the Protein Data Bank; the nodes of the graph are the atoms in the system. ChemNet accurately generates structures of diverse organic small molecules given knowledge of their atom composition and bonding, and given a description of the larger protein context, and builds up structures of small molecules and protein side chains for protein-small molecule docking. Because ChemNet is rapid and stochastic, ensembles of predictions can be readily generated to map conformational heterogeneity. In enzyme design efforts described here and elsewhere, we find that using ChemNet to assess the accuracy and pre-organization of the designed active sites results in higher success rates and higher activities; we obtain a preorganized retroaldolase with a
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小希完成签到,获得积分10
刚刚
log_10x完成签到 ,获得积分10
1秒前
耶耶耶完成签到,获得积分10
2秒前
山丘发布了新的文献求助10
2秒前
2秒前
2秒前
欢喜嘉懿完成签到,获得积分20
4秒前
中和皇极完成签到,获得积分0
4秒前
ddd发布了新的文献求助10
5秒前
爆米花应助肖雪依采纳,获得10
5秒前
余南发布了新的文献求助10
6秒前
木木发布了新的文献求助50
7秒前
Ava应助达克赛德采纳,获得10
9秒前
兴奋的小虾米完成签到,获得积分10
9秒前
9秒前
爆米花应助Alioth采纳,获得10
10秒前
兮兮完成签到,获得积分10
10秒前
ljx完成签到 ,获得积分10
12秒前
12秒前
13秒前
科研通AI2S应助sakura采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
不吃香菜发布了新的文献求助100
14秒前
小药童完成签到 ,获得积分10
15秒前
山丘完成签到,获得积分10
15秒前
16秒前
16秒前
skywalker发布了新的文献求助10
17秒前
骑个柯基完成签到,获得积分10
18秒前
yyfdqms完成签到,获得积分10
19秒前
meat12应助hhh采纳,获得10
20秒前
20秒前
21秒前
22秒前
fujiaxing完成签到,获得积分10
24秒前
田一完成签到,获得积分10
24秒前
24秒前
26秒前
时召展发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019