Air-Writing Recognition Enabled by a Flexible Dual-Network Hydrogel-Based Sensor and Machine Learning

材料科学 对偶(语法数字) 自愈水凝胶 纳米技术 高分子化学 文学类 艺术
作者
Derrick Ampadu Boateng,Xukai Li,Wen Wu,Anqi Yang,Anadil Gul,Yan Kang,Lin Yang,Lu He,Hongbo Zeng,Hao Zhang,Linbo Han
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c10168
摘要

Accurate air-writing recognition is pivotal for advancing state-of-the-art text recognizers, encryption tools, and biometric technologies. However, most existing air-writing recognition systems rely on image-based sensors to track hand and finger motion trajectories. Additionally, users' writing is often guided by delimiters and imaginary axes which restrict natural writing movements. Consequently, recognition accuracy falls short of optimal levels, hindering performance and usability for practical applications. Herein, we have developed an approach utilizing a one-dimensional convolutional neural network (1D-CNN) algorithm coupled with an ionic conductive flexible strain sensor based on a sodium chloride/sodium alginate/polyacrylamide (NaCl/SA/PAM) dual-network hydrogel for intelligent and accurate air-writing recognition. Taking advantage of the excellent characteristics of the hydrogel sensor, such as high stretchability, good tensile strength, high conductivity, strong adhesion, and high strain sensitivity, alongside the enhanced analytical ability of the 1D-CNN machine learning (ML) algorithm, we achieved a recognition accuracy of ∼96.3% for in-air handwritten characters of the English alphabets. Furthermore, comparative analysis against state-of-the-art methods, such as the widely used residual neural network (ResNet) algorithm, demonstrates the competitive performance of our integrated air-writing recognition system. The developed air-writing recognition system shows significant potential in advancing innovative systems for air-writing recognition and paving the way for exciting developments in human-machine interface (HMI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助tgene采纳,获得10
刚刚
纯真盛男发布了新的文献求助30
刚刚
ardejiang发布了新的文献求助10
1秒前
从容芮应助懦弱的如蓉采纳,获得10
3秒前
4秒前
5秒前
Orange应助优秀电源采纳,获得10
5秒前
东方耀发布了新的文献求助10
7秒前
雅2018完成签到 ,获得积分0
8秒前
8秒前
小二郎应助LiuYinglong采纳,获得10
8秒前
9秒前
10秒前
10秒前
11秒前
11秒前
龙龙发布了新的文献求助10
13秒前
13秒前
三冬四夏完成签到,获得积分10
16秒前
16秒前
Pineapple发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
甜甜玫瑰应助dabaan采纳,获得10
18秒前
19秒前
21秒前
亚蛋超可爱完成签到 ,获得积分10
22秒前
22秒前
23秒前
Hhh完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
25秒前
25秒前
26秒前
坚强的多嘴小蘑菇完成签到,获得积分10
26秒前
26秒前
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154309
求助须知:如何正确求助?哪些是违规求助? 2805114
关于积分的说明 7863632
捐赠科研通 2463326
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629506
版权声明 601821