Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables

数学优化 进化算法 集合(抽象数据类型) 约束(计算机辅助设计) 计算机科学 最优化问题 随机优化 数学 程序设计语言 几何学
作者
Frank Neumann,Carsten Witt
出处
期刊:Evolutionary Computation [MIT Press]
卷期号:: 1-22
标识
DOI:10.1162/evco_a_00355
摘要

Abstract Chance constrained optimization problems allow to model problems where constraints involving stochastic components should only be violated with a small probability. Evolutionary algorithms have been applied to this scenario and shown to achieve high quality results. With this paper, we contribute to the theoretical understanding of evolutionary algorithms for chance constrained optimization. We study the scenario of stochastic components that are independent and normally distributed. Considering the simple single-objective (1+1) EA, we show that imposing an additional uniform constraint already leads to local optima for very restricted scenarios and an exponential optimization time. We therefore introduce a multi-objective formulation of the problem which trades off the expected cost and its variance. We show that multi-objective evolutionary algorithms are highly effective when using this formulation and obtain a set of solutions that contains an optimal solution for any possible confidence level imposed on the constraint. Furthermore, we prove that this approach can also be used to compute a set of optimal solutions for the chance constrained minimum spanning tree problem. In order to deal with potentially exponentially many trade-offs in the multi-objective formulation, we propose and analyze improved convex multi-objective approaches. Experimental investigations on instances of the NP-hard stochastic minimum weight dominating set problem confirm the benefit of the multi-objective and the improved convex multi-objective approach in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Loik发布了新的文献求助10
刚刚
雨停了发布了新的文献求助10
刚刚
研友_VZG7GZ应助顺心的水之采纳,获得10
刚刚
1秒前
不配.应助清脆的书桃采纳,获得10
2秒前
2秒前
自建完成签到,获得积分10
3秒前
cc发布了新的文献求助30
4秒前
4秒前
汉堡包应助Loik采纳,获得10
6秒前
6秒前
8秒前
认真依琴发布了新的文献求助10
10秒前
10秒前
长情契完成签到,获得积分10
10秒前
科研通AI2S应助勤劳的嵩采纳,获得10
11秒前
Jasper应助j_采纳,获得10
12秒前
无风发布了新的文献求助10
13秒前
今后应助玛珂巴巴珂采纳,获得10
13秒前
17秒前
17秒前
雅2018完成签到 ,获得积分0
20秒前
yuwshuihen完成签到,获得积分10
23秒前
咖可乐发布了新的文献求助10
24秒前
小玄子完成签到,获得积分10
26秒前
27秒前
27秒前
陈追命发布了新的文献求助10
27秒前
29秒前
安笙凉城完成签到,获得积分10
30秒前
艾尔奥恩完成签到,获得积分10
30秒前
柚子发布了新的文献求助10
31秒前
31秒前
31秒前
j_发布了新的文献求助10
32秒前
Ava应助科研通管家采纳,获得10
33秒前
Singularity应助科研通管家采纳,获得20
33秒前
Singularity应助科研通管家采纳,获得10
33秒前
34秒前
顾矜应助科研通管家采纳,获得10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136176
求助须知:如何正确求助?哪些是违规求助? 2787079
关于积分的说明 7780454
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298964
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870