Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables

数学优化 进化算法 集合(抽象数据类型) 约束(计算机辅助设计) 计算机科学 最优化问题 随机优化 数学 程序设计语言 几何学
作者
Frank Neumann,Carsten Witt
出处
期刊:Evolutionary Computation [The MIT Press]
卷期号:: 1-22
标识
DOI:10.1162/evco_a_00355
摘要

Abstract Chance constrained optimization problems allow to model problems where constraints involving stochastic components should only be violated with a small probability. Evolutionary algorithms have been applied to this scenario and shown to achieve high quality results. With this paper, we contribute to the theoretical understanding of evolutionary algorithms for chance constrained optimization. We study the scenario of stochastic components that are independent and normally distributed. Considering the simple single-objective (1+1) EA, we show that imposing an additional uniform constraint already leads to local optima for very restricted scenarios and an exponential optimization time. We therefore introduce a multi-objective formulation of the problem which trades off the expected cost and its variance. We show that multi-objective evolutionary algorithms are highly effective when using this formulation and obtain a set of solutions that contains an optimal solution for any possible confidence level imposed on the constraint. Furthermore, we prove that this approach can also be used to compute a set of optimal solutions for the chance constrained minimum spanning tree problem. In order to deal with potentially exponentially many trade-offs in the multi-objective formulation, we propose and analyze improved convex multi-objective approaches. Experimental investigations on instances of the NP-hard stochastic minimum weight dominating set problem confirm the benefit of the multi-objective and the improved convex multi-objective approach in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
力量发布了新的文献求助10
刚刚
刚刚
刚刚
zhw完成签到,获得积分10
1秒前
1秒前
1秒前
liu完成签到,获得积分10
1秒前
欧阳振应助61forsci采纳,获得10
2秒前
想喝奶茶发布了新的文献求助10
2秒前
alisa发布了新的文献求助10
2秒前
漠寒发布了新的文献求助10
2秒前
哈哈发布了新的文献求助10
2秒前
sun关闭了sun文献求助
3秒前
WHaha发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Timing侠发布了新的文献求助10
4秒前
坦率的文龙完成签到,获得积分10
5秒前
快乐滑板发布了新的文献求助10
5秒前
5秒前
清爽绣连完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
情怀应助顾思凡采纳,获得10
7秒前
zaadasd发布了新的文献求助20
7秒前
玖玖完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
冬嘉完成签到,获得积分10
9秒前
Ava应助DADA采纳,获得10
9秒前
现代的访曼应助nandiaozhimu采纳,获得20
10秒前
10秒前
sakuraking完成签到,获得积分10
10秒前
123完成签到,获得积分10
10秒前
11秒前
11秒前
wangerer发布了新的文献求助10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326