材料科学
退火(玻璃)
原子单位
热的
硅
分子动力学
化学物理
比例(比率)
凝聚态物理
纳米技术
工程物理
光电子学
热力学
冶金
计算化学
化学
物理
量子力学
工程类
作者
Xianlin Qu,Feihong Chu,Yongcai He,Xiaoqing Chen,Zilong Zheng,Xixiang Xu,Zhenguo Li,Hui Yan,Yongzhe Zhang,Kun Zheng
标识
DOI:10.1002/adfm.202413141
摘要
Abstract The integrity of the hydrogenated amorphous silicon/crystalline silicon (a‐Si:H/c‐Si) interface is essential for the enhanced performance of a‐Si:H/c‐Si heterojunction‐based devices. However, during annealing processes aimed at passivating silicon dangling bonds, unexpected Si epitaxy and nanotwin formation tend to emerge, even under low‐temperature conditions. Therefore, understanding the influence of such annealing on the a‐Si:H/c‐Si interfacial structure is therefore pivotal for device optimization. In this study, the atomic‐scale structural transformation of the a‐Si:H/c‐Si heterointerface subjected to low‐temperature annealing is delved into. The dynamic evolution of this interface is captured by employing in situ spherical aberration (C S )‐corrected transmission electron microscopy (TEM), molecular dynamics (MD) simulations, and density functional theory (DFT) calculations. The TEM observations indicated that Si epitaxy initiated before Si nanotwin formation, and these nanotwins are inclined to revert to epitaxial structures upon sustained annealing. Through MD and DFT insights, the thermodynamic and kinetic intricacies driving the concerted tri‐layer atomic shift characterizing the Si nanotwin‐to‐epitaxy transition are decoded. The findings shed light on the thermal behavior of a‐Si:H/c‐Si interfaces, offering new perspectives on the thermal management in silicon heterojunction devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI