Advanced GeSe-based thermoelectric materials: Progress and future challenge

热电材料 热电效应 材料科学 工程物理 纳米技术 工程类 物理 热力学
作者
Tu Lyu,Moran Wang,Xiaohuan Luo,Yuwei Zhou,Lei Chen,Min Hong,Lipeng Hu
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:11 (3) 被引量:2
标识
DOI:10.1063/5.0220462
摘要

GeSe, composed of ecofriendly and earth-abundant elements, presents a promising alternative to conventional toxic lead-chalcogenides and earth-scarce tellurides as mid-temperature thermoelectric applications. This review comprehensively examines recent advancements in GeSe-based thermoelectric materials, focusing on their crystal structure, chemical bond, phase transition, and the correlations between chemical bonding mechanism and crystal structure. Additionally, the band structure and phonon dispersion of these materials are also explored. These unique features of GeSe provide diverse avenues for tuning the transport properties of both electrons and phonons. To optimize electrical transport properties, the strategies of carrier concentration engineering, multi-valence band convergence, and band degeneracy established on the phase modulation are underscored. To reduce the lattice thermal conductivity, emphasis is placed on intrinsic weak chemical bonds and anharmonicity related to chemical bonding mechanisms. Furthermore, extra-phonon scattering mechanisms, such as the point defects, ferroelectric domains, boundaries, nano-precipitates, and the phonon mismatch originating from the composite engineering, are highlighted. Additionally, an analysis of mechanical properties is performed to assess the long-term service of thermoelectric devices based on GeSe-based compounds, and correspondingly, the theoretical energy-conversion efficiency is discussed based on the present zT values of GeSe. This review provides an in-depth insight into GeSe by retrospectively examining the development process and proposing future research directions, which could accelerate the exploitation of GeSe and elucidate the development of broader thermoelectric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡应助平常的毛豆采纳,获得100
刚刚
默默的青旋完成签到,获得积分10
1秒前
4秒前
搜集达人应助淡淡采白采纳,获得10
4秒前
高高代珊完成签到 ,获得积分10
5秒前
gmc发布了新的文献求助10
6秒前
6秒前
7秒前
善学以致用应助Mian采纳,获得10
7秒前
学科共进发布了新的文献求助60
8秒前
LWJ完成签到 ,获得积分10
8秒前
8秒前
缓慢的糖豆完成签到,获得积分10
9秒前
阉太狼完成签到,获得积分10
9秒前
10秒前
soory完成签到,获得积分10
11秒前
任性的傲柏完成签到,获得积分10
11秒前
lwk205完成签到,获得积分0
11秒前
12秒前
一一完成签到,获得积分10
12秒前
12秒前
12秒前
高中生完成签到,获得积分10
13秒前
13秒前
13秒前
希望天下0贩的0应助TT采纳,获得10
14秒前
xxegt完成签到 ,获得积分10
14秒前
15秒前
爱吃泡芙发布了新的文献求助10
15秒前
susu完成签到,获得积分10
17秒前
会神发布了新的文献求助10
17秒前
KK完成签到,获得积分10
18秒前
充电宝应助justin采纳,获得10
20秒前
21秒前
Ch完成签到 ,获得积分10
22秒前
24秒前
ajun完成签到,获得积分10
24秒前
24秒前
春江完成签到,获得积分10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808