Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations

杰纳斯 材料科学 计算机科学 人工智能 纳米技术
作者
Qiao Zhang,Wei Tan,Ning YongQi,Nie GuoZheng,Cai Mengqiu,Wang Jun-nian,Huiping Zhu,Yuqing Zhao
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:73 (23)
标识
DOI:10.7498/aps.73.20241278
摘要

Discovering the compact、 stable and easily controllable nanoscale non-trivial topological magnetic structures—magnetic skyrmions,is the key to develop next-generation high-density, high-speed,and lowenergy non-volatile information storage devices.Based on the topological generation mechanism,magnetic skyrmions could be generated through the Dzyaloshinskii–Moriya Interaction (DMI) induced by spacereversal symmetry broken.Two dimensional (2D) non-centrosymmetric Janus could generate vertical builtin electric fields to break spatial inversion symmetry. Therefore, seeking 2D Janus with intrinsic magnetism is fundamental to develop the novel chiral magnetic storage technologies.In this work, we combined detailed machine learning techniques and first-principles calculations to discover the magnetism of the unexplored 2D janus. we first collected 1179 2D hexagonal ABC-type Janus based on the Materials Project database, and used elemental composition as feature descriptors to construct four machine learning models: Random Forest(RF), Gradient Boosting Decision Trees (GBDT), Extreme Gradient Boosting (XGB), and Extra Trees(ET). These algorithms and models were constructed to predict lattice constants, formation energies, and magnetic moment, via hyperparameter optimization and ten-fold cross-validation. GBDT exhibits the highest accuracy and best prediction performance for magnetic moment classification. Subsequently, the collected data of 82,018 yet-undiscovered 2D Janus,were input into the trained models to generate 4,024 high magnetic moment 2D Janus with thermal stability. First-principles calculations were employed to validate random sample of 13 Janus with high magnetic moment. This study provides an effective machine learning framework for magnetic moment classification and high-throughput screening of 2D Janus, accelerating the exploration of magnetic properties in 2D Janus structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的MX发布了新的文献求助10
1秒前
1秒前
uwu关闭了uwu文献求助
5秒前
5秒前
饶天源发布了新的文献求助10
5秒前
5秒前
开放身影完成签到,获得积分10
7秒前
liu完成签到,获得积分10
8秒前
9秒前
腾飞发布了新的文献求助10
10秒前
肖婉婷发布了新的文献求助10
10秒前
充电宝应助芯止谭轩采纳,获得10
10秒前
cx完成签到,获得积分20
11秒前
心灵美的翠芙完成签到 ,获得积分20
12秒前
燧人氏完成签到,获得积分10
13秒前
少年完成签到,获得积分10
14秒前
笨鸟先飞完成签到 ,获得积分10
14秒前
饶天源完成签到,获得积分10
14秒前
14秒前
14秒前
深情安青应助西柚采纳,获得10
15秒前
神勇的晟睿完成签到 ,获得积分10
15秒前
Jimmy Ko发布了新的文献求助10
16秒前
ssw发布了新的文献求助10
16秒前
16秒前
qq完成签到 ,获得积分10
17秒前
秦111完成签到 ,获得积分10
17秒前
17秒前
18秒前
十八鱼发布了新的文献求助10
19秒前
刘淼发布了新的文献求助10
19秒前
yyy发布了新的文献求助10
20秒前
yanchen完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294982
求助须知:如何正确求助?哪些是违规求助? 4444600
关于积分的说明 13834079
捐赠科研通 4328823
什么是DOI,文献DOI怎么找? 2376362
邀请新用户注册赠送积分活动 1371709
关于科研通互助平台的介绍 1336903