Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations

杰纳斯 材料科学 计算机科学 人工智能 纳米技术
作者
Qiao Zhang,Wei Tan,Ning YongQi,Nie GuoZheng,Cai Mengqiu,Wang Jun-nian,Huiping Zhu,Yuqing Zhao
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:73 (23)
标识
DOI:10.7498/aps.73.20241278
摘要

Discovering the compact、 stable and easily controllable nanoscale non-trivial topological magnetic structures—magnetic skyrmions,is the key to develop next-generation high-density, high-speed,and lowenergy non-volatile information storage devices.Based on the topological generation mechanism,magnetic skyrmions could be generated through the Dzyaloshinskii–Moriya Interaction (DMI) induced by spacereversal symmetry broken.Two dimensional (2D) non-centrosymmetric Janus could generate vertical builtin electric fields to break spatial inversion symmetry. Therefore, seeking 2D Janus with intrinsic magnetism is fundamental to develop the novel chiral magnetic storage technologies.In this work, we combined detailed machine learning techniques and first-principles calculations to discover the magnetism of the unexplored 2D janus. we first collected 1179 2D hexagonal ABC-type Janus based on the Materials Project database, and used elemental composition as feature descriptors to construct four machine learning models: Random Forest(RF), Gradient Boosting Decision Trees (GBDT), Extreme Gradient Boosting (XGB), and Extra Trees(ET). These algorithms and models were constructed to predict lattice constants, formation energies, and magnetic moment, via hyperparameter optimization and ten-fold cross-validation. GBDT exhibits the highest accuracy and best prediction performance for magnetic moment classification. Subsequently, the collected data of 82,018 yet-undiscovered 2D Janus,were input into the trained models to generate 4,024 high magnetic moment 2D Janus with thermal stability. First-principles calculations were employed to validate random sample of 13 Janus with high magnetic moment. This study provides an effective machine learning framework for magnetic moment classification and high-throughput screening of 2D Janus, accelerating the exploration of magnetic properties in 2D Janus structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
littleJ发布了新的文献求助10
2秒前
容容容发布了新的文献求助10
2秒前
zy发布了新的文献求助10
4秒前
huanhuan完成签到,获得积分10
6秒前
无花果应助满意的代荷采纳,获得10
8秒前
9秒前
兰格格完成签到,获得积分10
10秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
追寻紫安应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
嗯哼应助科研通管家采纳,获得10
13秒前
13秒前
852应助王欣采纳,获得10
14秒前
An完成签到,获得积分10
14秒前
Mzhao发布了新的文献求助10
15秒前
16秒前
情怀应助佳哥闯天下采纳,获得10
16秒前
16秒前
17秒前
18秒前
Tian完成签到 ,获得积分20
18秒前
ABS发布了新的文献求助10
20秒前
经管菜鸟完成签到,获得积分20
20秒前
xqk发布了新的文献求助30
21秒前
22秒前
22秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264956
求助须知:如何正确求助?哪些是违规求助? 2904855
关于积分的说明 8331877
捐赠科研通 2575269
什么是DOI,文献DOI怎么找? 1399722
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633353