Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures

电催化剂 氧气 钙钛矿(结构) 析氧 材料科学 化学 结晶学 电化学 物理化学 电极 有机化学
作者
Zhiheng Li,Xin Mao,Desheng Feng,Mengran Li,Xiaoyong Xu,Yadan Luo,Linzhou Zhuang,Rijia Lin,Tianjiu Zhu,Fengli Liang,Zi Huang,Dong Liu,Zifeng Yan,Aijun Du,Zongping Shao,Zhonghua Zhu
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:15 (1) 被引量:9
标识
DOI:10.1038/s41467-024-53578-7
摘要

Efficient catalysts are imperative to accelerate the slow oxygen reaction kinetics for the development of emerging electrochemical energy systems ranging from room-temperature alkaline water electrolysis to high-temperature ceramic fuel cells. In this work, we reveal the role of cationic inductive interactions in predetermining the oxygen vacancy concentrations of 235 cobalt-based and 200 iron-based perovskite catalysts at different temperatures, and this trend can be well predicted from machine learning techniques based on the cationic lattice environment, requiring no heavy computational and experimental inputs. Our results further show that the catalytic activity of the perovskites is strongly correlated with their oxygen vacancy concentration and operating temperatures. We then provide a machine learning-guided route for developing oxygen electrocatalysts suitable for operation at different temperatures with time efficiency and good prediction accuracy. Catalyst screening is an important process but it's usually time-consuming and labor intensive. Here the authors report the prediction of oxygen vacancy for perovskites using machine learning techniques to develop suitable oxygen electrocatalysts for solid oxide fuel cells at reduced temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林林完成签到,获得积分10
刚刚
flytime1115发布了新的文献求助10
刚刚
2秒前
研友_VZG7GZ应助张朵朵采纳,获得10
2秒前
领导范儿应助金云采纳,获得70
3秒前
沈星燃完成签到,获得积分10
3秒前
xiaomings007发布了新的文献求助10
3秒前
kkPi发布了新的文献求助10
5秒前
6秒前
深情安青应助高君奇采纳,获得10
7秒前
7秒前
甄冰海发布了新的文献求助10
8秒前
豆腐青菜雨应助帅气的猫采纳,获得10
8秒前
SciGPT应助帅气的猫采纳,获得10
8秒前
汉堡包应助edk101采纳,获得10
8秒前
xyrehab完成签到,获得积分10
9秒前
9秒前
Jasper应助细心的冬易采纳,获得10
9秒前
yao发布了新的文献求助10
10秒前
卷卷菜发布了新的文献求助10
11秒前
13秒前
Dawn完成签到,获得积分10
14秒前
望今如昔关注了科研通微信公众号
14秒前
who关注了科研通微信公众号
14秒前
金云完成签到,获得积分10
15秒前
姜夔完成签到,获得积分10
15秒前
SYLH应助甄冰海采纳,获得10
15秒前
15秒前
16秒前
冬去春来完成签到 ,获得积分10
17秒前
18秒前
毛毛虫发布了新的文献求助10
18秒前
张朵朵发布了新的文献求助10
18秒前
18秒前
21秒前
缥缈伟祺完成签到,获得积分10
21秒前
21秒前
21秒前
科研通AI5应助蝌蚪采纳,获得10
22秒前
维妮妮完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652210
求助须知:如何正确求助?哪些是违规求助? 3216430
关于积分的说明 9711869
捐赠科研通 2924198
什么是DOI,文献DOI怎么找? 1601568
邀请新用户注册赠送积分活动 754238
科研通“疑难数据库(出版商)”最低求助积分说明 733002