Multiscale cooperative optimization in multiscale geographically weighted regression models

地理加权回归模型 地理 计算机科学 地图学 数据挖掘 计量经济学 统计 数学
作者
Jinbiao Yan,Bo Wu,Zheng He
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:: 1-20 被引量:1
标识
DOI:10.1080/13658816.2024.2410346
摘要

Scale in multiscale geographically weighted regression (MGWR) directly impacts the accuracy of coefficient estimates and shapes the comprehensive evaluation of the intensity of spatially non-stationary relationships. Presently, MGWR primarily utilizes back-fitting for sequentially optimizing multiple scales (MGWR-BF). However, the set of individual optima obtained through sequential optimization may not necessarily represent the global optimum. To address this issue, this paper proposes a multi-scale cooperative optimization within MGWR (MGWR-GA) model. Specifically, MGWR-GA employs a genetic algorithm to simultaneously input potential scale combinations, each comprising P scales. Subsequently, it introduces a dedicated overall estimation algorithm designed for these P scales, ultimately determining the optimal scale combinations based on the AICc. Simulation experiments have shown that, at least for global stationarity, the scales obtained by MGWR-GA approximate the true values across twelve different test environments. Additionally, the coefficient estimation bias of MGWR-GA is lower than that of MGWR-BF, especially in low signal-to-noise ratio settings. Empirical experiments further confirm the effectiveness of MGWR-GA in identifying both globally stationary and locally non-stationary scales. Furthermore, MGWR-GA outperforms MGWR-BF in terms of goodness-of-fit, adjusted goodness-of-fit, AICc and spatial autocorrelation of residuals. These findings indicate that MGWR-GA can serve as a valuable tool for modeling spatially non-stationary relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuanxuan完成签到 ,获得积分10
1秒前
我的文献呢应助热情若翠采纳,获得30
1秒前
1秒前
ha驳回了所所应助
2秒前
工藤新一发布了新的文献求助20
3秒前
十一发布了新的文献求助10
3秒前
4秒前
大方语风完成签到,获得积分10
4秒前
林度可乐完成签到 ,获得积分10
5秒前
6秒前
呃呃呃c发布了新的文献求助30
6秒前
Owen应助科研白菜采纳,获得10
7秒前
大白鹅发布了新的文献求助10
7秒前
momo应助坦率的电灯胆采纳,获得10
8秒前
Orange应助李多鱼采纳,获得10
10秒前
wanci应助我有一个超能力采纳,获得10
10秒前
折耳根完成签到 ,获得积分10
12秒前
十一完成签到,获得积分10
13秒前
大方语风发布了新的文献求助10
13秒前
14秒前
易酰水烊酸应助十一采纳,获得10
16秒前
17秒前
17秒前
SYLH应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
SONGYEZI应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
ED应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
SONGYEZI应助科研通管家采纳,获得20
19秒前
19秒前
19秒前
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629