Towards high-performance anthraquinone-derived cathode material for lithium-ion batteries through rational molecular design

吡嗪 锂(药物) 电极 电化学 电解质 分子 溶解 材料科学 戒指(化学) 阴极 密度泛函理论 合理设计 化学 化学工程 纳米技术 物理化学 计算化学 有机化学 工程类 内分泌学 医学
作者
Han‐Qing Yu,Susu Li,Jixing Yang,Yunhua Xu,Yuesheng Li
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:466: 143316-143316 被引量:2
标识
DOI:10.1016/j.cej.2023.143316
摘要

Organic electrode materials are considered to be one of promising alternatives for next-generation lithium-ion batteries, yet they often suffer from problem of severe dissolution in electrolytes, which inhibits their practicability. Herein, a rational molecular design strategy through constructing redox-active molecules with non-fused ring but planar structure was proposed. To validate our ideas, 1,4-bis(9,10-anthraquinonyl)pyrazine (BAQP) was synthesized by connecting two AQ units to 2,5-positions of pyrazine via C-C bond. Density functional theory calculation reveals that BAQP is a planar structure because of reduction of hydrogen atoms adjacent to bonding sites. Comparative experiments show that solubility of BAQP is significantly reduced. Electrochemical tests demonstrate BAQP electrode for lithium-ion batteries displays prominently enhanced cycle performance (90.7% retention after 100 cycles at 0.2 C) and rate capability (capacity at 5 C is 79.8% of capacity at 0.2 C), which is much better than that of its control molecule, 1,4-bis(9,10-anthraquinonyl)benzene (BAQB, corresponding retentions are 40.2% and 53.5%, respectively). Importantly, the BAQP electrode also shows an excellent long cycle life of 1000 cycle with high retention of 70.0%, which is among the best long-term cycle performance in the literature about AQ-derived small molecule electrode materials. These results manifest that the molecular design concept of fabricating non-fused ring but planar structure is effective to develop high-performance organic electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spppb发布了新的文献求助10
刚刚
夏日天空发布了新的文献求助10
2秒前
Lwj发布了新的文献求助10
3秒前
所所应助狗狗明明采纳,获得10
3秒前
3秒前
桃桃吖完成签到,获得积分10
3秒前
4秒前
天天快乐应助LinYX采纳,获得10
5秒前
科研通AI5应助王肄博采纳,获得10
6秒前
SYLH应助LLL_888采纳,获得10
6秒前
7秒前
斯文的寒风举报求助违规成功
7秒前
踏实无敌举报求助违规成功
7秒前
7秒前
8秒前
hhh发布了新的文献求助10
8秒前
515发布了新的文献求助10
8秒前
SYLH应助YCW采纳,获得10
8秒前
8秒前
科研通AI5应助怡然谷雪采纳,获得10
9秒前
田様应助hanabi采纳,获得10
10秒前
时尚的八宝粥完成签到,获得积分10
10秒前
11秒前
nanyin完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
张光光发布了新的文献求助10
13秒前
852应助夏日天空采纳,获得10
13秒前
14秒前
14秒前
共享精神应助515采纳,获得10
15秒前
YAFD完成签到,获得积分20
15秒前
15秒前
奋斗羊完成签到,获得积分10
15秒前
yunqing发布了新的文献求助10
16秒前
16秒前
斯文的寒风举报求助违规成功
16秒前
kingwill举报求助违规成功
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756737
求助须知:如何正确求助?哪些是违规求助? 3300155
关于积分的说明 10112592
捐赠科研通 3014665
什么是DOI,文献DOI怎么找? 1655622
邀请新用户注册赠送积分活动 790048
科研通“疑难数据库(出版商)”最低求助积分说明 753552