Deep Learning-Based Device-Free Localization in Wireless Sensor Networks

计算机科学 无线传感器网络 无线 深度学习 无线传感器网络中的密钥分配 无线网络 人工智能 计算机网络 电信
作者
Osamah Abdullah,Hayder Al-Hraishawi,Symeon Chatzinotas
标识
DOI:10.1109/wcnc55385.2023.10118744
摘要

Location-based services are witnessing a rise in popularity owing to their key features of delivering personalized digital experience. The recent developments in wireless sensing techniques make the realization of device-free localization (DFL) feasible within wireless sensor network (WSN) architectures. The DFL is an emerging technology that utilizes radio signal information for detecting and positioning a passive movable target without attached devices. However, determining the characteristics of the massive raw signals and extracting meaningful discriminative features relevant to the localization are highly intricate tasks due to the different patterns associated with different locations. To overcome these issues, deep learning (DL) techniques can be utilized here owing to their remarkable performance gains in similar practical problems. In this direction, we propose a DFL framework consists of multiple convolutional neural network (CNN) layers along with deep autoencoders based on the restricted Boltzmann machines (RBM) to construct a convolutional deep belief network (CDBN) for features recognition and extracting. Each CNN layer has stochastic pooling to sample down the feature map and reduced the dimensions of the required data without losing important information. This dimensionality reduction can alleviate the heavy computation while ensuring precise localization. The proposed framework is validated using real experimental dataset. The results show that the proposed model is able to achieve a high accuracy of 98% with reduced data dimensions and low signal-to-noise ratios (SNRs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别管我了应助ss采纳,获得30
2秒前
2秒前
2秒前
3秒前
czcz发布了新的文献求助10
3秒前
科研通AI5应助DD采纳,获得10
6秒前
7秒前
无花果应助时舒采纳,获得30
8秒前
9秒前
9秒前
小人物完成签到,获得积分20
9秒前
10秒前
Jonathan发布了新的文献求助10
10秒前
czcz完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
LingO发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助蒸蒸日上采纳,获得10
15秒前
浅忆发布了新的文献求助10
16秒前
18秒前
Biggest发布了新的文献求助10
19秒前
19秒前
愉快奇异果完成签到,获得积分20
19秒前
1423849686发布了新的文献求助10
19秒前
科研通AI2S应助Ebony采纳,获得10
21秒前
22秒前
殷勤的哈密瓜完成签到,获得积分10
24秒前
DD发布了新的文献求助10
24秒前
李健应助勤恳如凡采纳,获得10
25秒前
26秒前
28秒前
CipherSage应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
Owen应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
思源应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
张大帅6666完成签到,获得积分10
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980440
求助须知:如何正确求助?哪些是违规求助? 3524384
关于积分的说明 11221298
捐赠科研通 3261829
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879476
科研通“疑难数据库(出版商)”最低求助积分说明 807283