Solar photovoltaic power prediction using artificial neural network and multiple regression considering ambient and operating conditions

人工神经网络 光伏系统 线性回归 功率(物理) 风速 均方误差 近似误差 非线性回归 计算机科学 回归分析 统计 算法 气象学 机器学习 工程类 人工智能 数学 电气工程 物理 量子力学
作者
Abdelhak Keddouda,Razika Ihaddadène,Ali Boukhari,Abdelmalek Atia,Müslüm Arıcı,Nacer Lebbihiat,Nabila Ihaddadène
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:288: 117186-117186 被引量:52
标识
DOI:10.1016/j.enconman.2023.117186
摘要

This paper proposes artificial neural network (ANN) and regression models for photovoltaic modules power output predictions and investigates the effects of climatic conditions and operating temperature on the estimated output. The models use six days of experimental data creating a large dataset of 172,800 × 7. After data preprocessing, the appropriate attributes were selected as inputs and taken into account as features; solar irradiation, ambient air and module temperature, wind speed, and relative humidity, while the power generation as a target. In light of these data, the effect of training algorithm on the predictive performance of the ANN model was investigated. Results show that solar irradiation, ambient and module temperatures are key factors in predicting PV module power generation, as these variables are strongly correlated with PV power output. Moreover, the Levenberg-Marquardt algorithm was found to be the best training procedure. The ANN model demonstrated higher accuracy than the developed multiple linear regression models. However, the proposed Rational-Power-Law (RPL) and Power-Law (PL) models were able to capture the nonlinearity in the system, as assessed by coefficient of determination (R2) and the Mean Absolute Error (MAE), and successfully supplied a very high level of precision. The ANN, and both RPL and PL models provided comparable performance, attaining an R2 of 0.997, 0.998 and 0.996, and a MAE of 1.998, 1.156, and 1.242, respectively, when compared to experimental results. Furthermore, models proposed in this study were evaluated and compared with others available in literature and have demonstrated superior performance and better accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴依白完成签到,获得积分10
1秒前
滑稽剑客发布了新的文献求助10
2秒前
mephist发布了新的文献求助30
4秒前
想飞的兔子完成签到,获得积分20
5秒前
7秒前
害羞含雁完成签到,获得积分10
8秒前
shizi完成签到,获得积分10
9秒前
滑稽剑客完成签到,获得积分10
10秒前
haidayu完成签到,获得积分10
12秒前
康康0919ing完成签到,获得积分10
15秒前
SYLH应助ssssss采纳,获得10
17秒前
23秒前
24秒前
25秒前
ldh应助葳蕤苍生采纳,获得10
29秒前
宾周发布了新的文献求助10
30秒前
xingyu发布了新的文献求助10
30秒前
晴空万里完成签到,获得积分10
32秒前
昏睡的乌冬面完成签到 ,获得积分10
32秒前
35秒前
啊哒吸哇完成签到,获得积分10
36秒前
烟花应助111采纳,获得10
36秒前
Del发布了新的文献求助10
39秒前
田様应助xingyu采纳,获得10
40秒前
纯真的诗兰完成签到,获得积分10
41秒前
HOXXXiii完成签到,获得积分10
43秒前
南亭完成签到,获得积分10
46秒前
48秒前
49秒前
49秒前
melone完成签到,获得积分10
49秒前
49秒前
NexusExplorer应助顺利凡蕾采纳,获得10
51秒前
爱学习的悦悦子完成签到 ,获得积分10
52秒前
坚强的哈密瓜完成签到,获得积分10
52秒前
帅气西牛完成签到,获得积分10
52秒前
54秒前
Del完成签到,获得积分10
54秒前
JamesPei应助Gj采纳,获得10
55秒前
csy发布了新的文献求助10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761753
求助须知:如何正确求助?哪些是违规求助? 3305518
关于积分的说明 10134626
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751