亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics and dosiomics-based prediction of radiotherapy-induced xerostomia in head and neck cancer patients

无线电技术 医学 头颈部癌 接收机工作特性 放射治疗 核医学 放射科 内科学
作者
Hamid Abdollahi,Tania Dehesh,Neda Abdalvand,Arman Rahmim
出处
期刊:International Journal of Radiation Biology [Taylor & Francis]
卷期号:99 (11): 1669-1683 被引量:4
标识
DOI:10.1080/09553002.2023.2214206
摘要

Dose-response modeling for radiotherapy-induced xerostomia in head and neck cancer (HN) patients is a promising frontier for personalized therapy. Feature extraction from diagnostic and therapeutic images (radiomics and dosiomics features) can be used for data-driven response modeling. The aim of this study is to develop xerostomia predictive models based on radiomics-dosiomics features.Data from the cancer imaging archive (TCIA) for 31 HN cancer patients were employed. For all patients, parotid CT radiomics features were extracted, utilizing Lasso regression for feature selection and multivariate modeling. The models were developed by selected features from pretreatment (CT1), mid-treatment (CT2), post-treatment (CT3), and delta features (ΔCT2-1, ΔCT3-1, ΔCT3-2). We also considered dosiomics features extracted from the parotid dose distribution images (Dose model). Thus, combination models of radio-dosiomics (CT + dose & ΔCT + dose) were developed. Moreover, clinical, and dose-volume histogram (DVH) models were built. Nested 10-fold cross-validation was used to assess the predictive classification of patients into those with and without xerostomia, and the area under the receiver operative characteristic curve (AUC) was used to compare the predictive power of the models. The sensitivity and accuracy of models also were obtained.In total, 59 parotids were assessed, and 13 models were developed. Our results showed three models with AUC of 0.89 as most predictive, namely ΔCT2-1 + Dose (Sensitivity 0.99, Accuracy 0.94 & Specificity 0.86), CT3 model (Sensitivity 0.96, Accuracy 0.94 & Specificity 0.86) and DVH (Sensitivity 0.93, Accuracy 0.89 & Specificity 0.84). These models were followed by Clinical (AUC 0.89, Sensitivity 0.81, Accuracy 0.97 & Specificity 0.89) and CT2 & Dose (AUC 0.86, Sensitivity 0.97, Accuracy 0.87 & Specificity 0.82). The Dose model (developed by dosiomics features only) had AUC, Sensitivity, Specificity, and Accuracy of 0.72, 0.98, 0.33, and 0.79 respectively.Quantitative features extracted from diagnostic imaging during and after radiotherapy alone or in combination with dosiomics markers obtained from dose distribution images can be used for radiotherapy response modeling, opening up prospects for personalization of therapies toward improved therapeutic outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roy完成签到,获得积分10
5秒前
bkagyin应助hkxfg采纳,获得10
8秒前
18秒前
02发布了新的文献求助10
25秒前
运运完成签到 ,获得积分10
28秒前
Maple发布了新的文献求助10
35秒前
wzzznh完成签到 ,获得积分10
46秒前
Maple完成签到,获得积分10
50秒前
端庄亦巧完成签到 ,获得积分10
51秒前
科研通AI5应助jacs111采纳,获得10
51秒前
CodeCraft应助罗舒采纳,获得10
54秒前
1分钟前
1分钟前
jacs111发布了新的文献求助10
1分钟前
Zjc0913完成签到 ,获得积分10
1分钟前
libob完成签到,获得积分10
1分钟前
Aaaaa发布了新的文献求助10
1分钟前
jacs111完成签到,获得积分10
1分钟前
xmqaq完成签到,获得积分10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
Aaaaa完成签到,获得积分20
1分钟前
林利芳完成签到 ,获得积分0
1分钟前
1分钟前
流萤发布了新的文献求助30
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
鱼羊明完成签到 ,获得积分10
1分钟前
tufei完成签到,获得积分10
1分钟前
暮冬完成签到 ,获得积分10
1分钟前
流萤完成签到,获得积分10
1分钟前
瑞瑞刘完成签到 ,获得积分10
2分钟前
土豪的摩托完成签到 ,获得积分10
2分钟前
z610938841完成签到,获得积分10
2分钟前
雨yu完成签到 ,获得积分10
2分钟前
张晓祁完成签到,获得积分10
2分钟前
yueying完成签到,获得积分10
2分钟前
2分钟前
脑洞疼应助邓邓采纳,获得10
2分钟前
3分钟前
笨蛋美女完成签到 ,获得积分10
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214