Radiomics and dosiomics-based prediction of radiotherapy-induced xerostomia in head and neck cancer patients

无线电技术 医学 头颈部癌 接收机工作特性 放射治疗 核医学 放射科 内科学
作者
Hamid Abdollahi,Tania Dehesh,Neda Abdalvand,Arman Rahmim
出处
期刊:International Journal of Radiation Biology [Informa]
卷期号:99 (11): 1669-1683 被引量:2
标识
DOI:10.1080/09553002.2023.2214206
摘要

Dose-response modeling for radiotherapy-induced xerostomia in head and neck cancer (HN) patients is a promising frontier for personalized therapy. Feature extraction from diagnostic and therapeutic images (radiomics and dosiomics features) can be used for data-driven response modeling. The aim of this study is to develop xerostomia predictive models based on radiomics-dosiomics features.Data from the cancer imaging archive (TCIA) for 31 HN cancer patients were employed. For all patients, parotid CT radiomics features were extracted, utilizing Lasso regression for feature selection and multivariate modeling. The models were developed by selected features from pretreatment (CT1), mid-treatment (CT2), post-treatment (CT3), and delta features (ΔCT2-1, ΔCT3-1, ΔCT3-2). We also considered dosiomics features extracted from the parotid dose distribution images (Dose model). Thus, combination models of radio-dosiomics (CT + dose & ΔCT + dose) were developed. Moreover, clinical, and dose-volume histogram (DVH) models were built. Nested 10-fold cross-validation was used to assess the predictive classification of patients into those with and without xerostomia, and the area under the receiver operative characteristic curve (AUC) was used to compare the predictive power of the models. The sensitivity and accuracy of models also were obtained.In total, 59 parotids were assessed, and 13 models were developed. Our results showed three models with AUC of 0.89 as most predictive, namely ΔCT2-1 + Dose (Sensitivity 0.99, Accuracy 0.94 & Specificity 0.86), CT3 model (Sensitivity 0.96, Accuracy 0.94 & Specificity 0.86) and DVH (Sensitivity 0.93, Accuracy 0.89 & Specificity 0.84). These models were followed by Clinical (AUC 0.89, Sensitivity 0.81, Accuracy 0.97 & Specificity 0.89) and CT2 & Dose (AUC 0.86, Sensitivity 0.97, Accuracy 0.87 & Specificity 0.82). The Dose model (developed by dosiomics features only) had AUC, Sensitivity, Specificity, and Accuracy of 0.72, 0.98, 0.33, and 0.79 respectively.Quantitative features extracted from diagnostic imaging during and after radiotherapy alone or in combination with dosiomics markers obtained from dose distribution images can be used for radiotherapy response modeling, opening up prospects for personalization of therapies toward improved therapeutic outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猴完成签到,获得积分10
刚刚
Raymond应助NANA采纳,获得10
1秒前
Sean完成签到 ,获得积分10
1秒前
1秒前
无情山水发布了新的文献求助10
2秒前
锦纹完成签到,获得积分10
2秒前
南桥发布了新的文献求助10
2秒前
2秒前
伶俐的书白完成签到,获得积分10
3秒前
科研通AI5应助威武诺言采纳,获得10
3秒前
3秒前
LXL完成签到,获得积分10
3秒前
杳鸢应助三金采纳,获得20
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
英俊的铭应助yyj采纳,获得10
4秒前
SV发布了新的文献求助10
4秒前
5秒前
12发布了新的文献求助10
5秒前
JamesPei应助化学狗采纳,获得10
5秒前
胡图图发布了新的文献求助10
5秒前
6秒前
xm完成签到,获得积分10
7秒前
谦让的含海完成签到,获得积分10
7秒前
所所应助包容的剑采纳,获得10
7秒前
7秒前
8秒前
lynn_zhang发布了新的文献求助10
8秒前
9秒前
xh发布了新的文献求助10
9秒前
所所应助luoshi采纳,获得10
9秒前
飞龙在天完成签到 ,获得积分10
9秒前
深爱不疑完成签到,获得积分10
10秒前
知识四面八方来完成签到 ,获得积分10
10秒前
我就是我完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762