亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Privacy Preserving Federated Learning in Medical Imaging with Uncertainty Estimation

计算机科学 联合学习 估计 人工智能 医学影像学 互联网隐私 经济 管理
作者
Nikolas Koutsoubis,Yasin Yilmaz,Ravi P. Ramachandran,Matthew B. Schabath,Ghulam Rasool
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.12815
摘要

Machine learning (ML) and Artificial Intelligence (AI) have fueled remarkable advancements, particularly in healthcare. Within medical imaging, ML models hold the promise of improving disease diagnoses, treatment planning, and post-treatment monitoring. Various computer vision tasks like image classification, object detection, and image segmentation are poised to become routine in clinical analysis. However, privacy concerns surrounding patient data hinder the assembly of large training datasets needed for developing and training accurate, robust, and generalizable models. Federated Learning (FL) emerges as a compelling solution, enabling organizations to collaborate on ML model training by sharing model training information (gradients) rather than data (e.g., medical images). FL's distributed learning framework facilitates inter-institutional collaboration while preserving patient privacy. However, FL, while robust in privacy preservation, faces several challenges. Sensitive information can still be gleaned from shared gradients that are passed on between organizations during model training. Additionally, in medical imaging, quantifying model confidence\uncertainty accurately is crucial due to the noise and artifacts present in the data. Uncertainty estimation in FL encounters unique hurdles due to data heterogeneity across organizations. This paper offers a comprehensive review of FL, privacy preservation, and uncertainty estimation, with a focus on medical imaging. Alongside a survey of current research, we identify gaps in the field and suggest future directions for FL research to enhance privacy and address noisy medical imaging data challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
strzeng发布了新的文献求助10
8秒前
hairgod发布了新的文献求助10
10秒前
hairgod完成签到,获得积分10
23秒前
1分钟前
小谢完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
may发布了新的文献求助30
3分钟前
3分钟前
矢思然发布了新的文献求助10
3分钟前
lod完成签到,获得积分10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
zsmj23完成签到 ,获得积分0
4分钟前
量子星尘发布了新的文献求助10
4分钟前
nav完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
kmzzy完成签到,获得积分10
5分钟前
Sandy应助AliEmbark采纳,获得30
5分钟前
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
胡可完成签到 ,获得积分10
6分钟前
6分钟前
黄文霜发布了新的文献求助10
6分钟前
6分钟前
科目三应助黄文霜采纳,获得10
6分钟前
Yx发布了新的文献求助10
6分钟前
6分钟前
张琦完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
草木完成签到 ,获得积分20
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128693
捐赠科研通 3238333
什么是DOI,文献DOI怎么找? 1789703
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069