Privacy Preserving Federated Learning in Medical Imaging with Uncertainty Estimation

计算机科学 联合学习 估计 人工智能 医学影像学 互联网隐私 经济 管理
作者
Nikolas Koutsoubis,Yasin Yilmaz,Ravi P. Ramachandran,Matthew B. Schabath,Ghulam Rasool
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.12815
摘要

Machine learning (ML) and Artificial Intelligence (AI) have fueled remarkable advancements, particularly in healthcare. Within medical imaging, ML models hold the promise of improving disease diagnoses, treatment planning, and post-treatment monitoring. Various computer vision tasks like image classification, object detection, and image segmentation are poised to become routine in clinical analysis. However, privacy concerns surrounding patient data hinder the assembly of large training datasets needed for developing and training accurate, robust, and generalizable models. Federated Learning (FL) emerges as a compelling solution, enabling organizations to collaborate on ML model training by sharing model training information (gradients) rather than data (e.g., medical images). FL's distributed learning framework facilitates inter-institutional collaboration while preserving patient privacy. However, FL, while robust in privacy preservation, faces several challenges. Sensitive information can still be gleaned from shared gradients that are passed on between organizations during model training. Additionally, in medical imaging, quantifying model confidence\uncertainty accurately is crucial due to the noise and artifacts present in the data. Uncertainty estimation in FL encounters unique hurdles due to data heterogeneity across organizations. This paper offers a comprehensive review of FL, privacy preservation, and uncertainty estimation, with a focus on medical imaging. Alongside a survey of current research, we identify gaps in the field and suggest future directions for FL research to enhance privacy and address noisy medical imaging data challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七完成签到,获得积分10
刚刚
汉堡包应助不想开组会采纳,获得10
刚刚
晓风残月发布了新的文献求助10
刚刚
慕青应助11采纳,获得10
1秒前
1秒前
jumao1999发布了新的文献求助10
1秒前
今晚吃什么完成签到,获得积分10
1秒前
杨三多发布了新的文献求助10
1秒前
scutwqq发布了新的文献求助10
1秒前
充电宝应助甲乙丙丁采纳,获得10
2秒前
小熊维C发布了新的文献求助10
2秒前
2秒前
Lily发布了新的文献求助10
2秒前
干净依秋发布了新的文献求助10
2秒前
好好好完成签到,获得积分10
3秒前
小胡完成签到,获得积分10
3秒前
Airblew完成签到,获得积分10
3秒前
打死不穿秋裤完成签到,获得积分10
3秒前
温柔梦松发布了新的文献求助10
3秒前
科研通AI6应助想发sci采纳,获得10
3秒前
3秒前
清秀的笑萍完成签到,获得积分10
3秒前
3秒前
张雯雯发布了新的文献求助10
3秒前
纯真怜梦发布了新的文献求助10
4秒前
4秒前
天天快乐应助青木蓝采纳,获得10
4秒前
高金龙完成签到,获得积分10
4秒前
科研民工发布了新的文献求助10
5秒前
李健的小迷弟应助husky采纳,获得10
5秒前
5秒前
Yohi完成签到 ,获得积分10
5秒前
duchenglin完成签到 ,获得积分10
5秒前
5秒前
xxfsx应助余裕采纳,获得10
6秒前
6秒前
abb完成签到 ,获得积分10
6秒前
6秒前
芃芃野发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409994
求助须知:如何正确求助?哪些是违规求助? 4527505
关于积分的说明 14111164
捐赠科研通 4441880
什么是DOI,文献DOI怎么找? 2437744
邀请新用户注册赠送积分活动 1429674
关于科研通互助平台的介绍 1407750