A feature-aware multimodal framework with auto-fusion for Alzheimer’s disease diagnosis

计算机科学 特征(语言学) 人工智能 疾病 多模态 融合 模式识别(心理学) 机器学习 医学 病理 万维网 哲学 语言学
作者
Meiwei Zhang,Qiushi Cui,Yang Lü,Wenyuan Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108740-108740 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108740
摘要

Alzheimer's disease (AD), one of the most common dementias, has about 4.6 million new cases yearly worldwide. Due to the significant amount of suspected AD patients, early screening for the disease has become particularly important. There are diversified types of AD diagnosis data, such as cognitive tests, images, and risk factors, many prior investigations have primarily concentrated on integrating only high-dimensional features and simple fusion concatenation, resulting in less-than-optimal outcomes for AD diagnosis. Therefore, We propose an enhanced multimodal AD diagnostic framework comprising a feature-aware module and an automatic model fusion strategy (AMFS). To preserve the correlation and significance features within a low-dimensional space, the feature-aware module employs a low-dimensional SHapley Additive exPlanation (SHAP) boosting feature selection as the initial step, following this analysis, diverse tiers of low-dimensional features are extracted from patients' biological data. Besides, in the high-dimensional stage, the feature-aware module integrates cross-modal attention mechanisms to capture subtle relationships among different cognitive domains, neuroimaging modalities, and risk factors. Subsequently, we integrate the aforementioned feature-aware module with graph convolutional networks (GCN) to address heterogeneous data in multimodal AD, while also possessing the capability to perceive relationships between different modalities. Lastly, our proposed AMFS autonomously learns optimal parameters for aligning two sub-models. The validation tests using two ADNI datasets show the high accuracies of 95.9% and 91.9% respectively, in AD diagnosis. The methods efficiently select features from multimodal AD data, optimizing model fusion for potential clinical assistance in diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
deway发布了新的文献求助10
2秒前
Kinn完成签到,获得积分10
4秒前
4秒前
粥粥完成签到 ,获得积分10
4秒前
研友_8Y26PL完成签到 ,获得积分10
5秒前
cc完成签到,获得积分10
6秒前
喃恬完成签到,获得积分10
8秒前
爆米花应助联勤杜闯采纳,获得10
8秒前
佟谷兰完成签到,获得积分10
9秒前
斯文败类应助deway采纳,获得10
9秒前
雷霆康康完成签到,获得积分10
10秒前
七七完成签到 ,获得积分10
11秒前
12秒前
Jovie给Jovie的求助进行了留言
12秒前
12秒前
12秒前
香菜完成签到,获得积分10
14秒前
老婆婆不讲理完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
Minicoper发布了新的文献求助10
16秒前
17秒前
Zhaowx完成签到,获得积分10
18秒前
magic_sweets完成签到,获得积分10
19秒前
Antonio完成签到,获得积分10
19秒前
坚定的老六完成签到,获得积分10
19秒前
枫叶完成签到 ,获得积分10
20秒前
爆米花应助wangnn采纳,获得10
21秒前
22秒前
Minicoper完成签到,获得积分10
22秒前
小帅完成签到,获得积分10
22秒前
tao完成签到 ,获得积分10
22秒前
96完成签到 ,获得积分10
23秒前
枕雪听冷冷完成签到,获得积分20
25秒前
Jovie完成签到,获得积分10
26秒前
27秒前
27秒前
27秒前
852应助123采纳,获得10
29秒前
ll完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910822
求助须知:如何正确求助?哪些是违规求助? 4186436
关于积分的说明 12999794
捐赠科研通 3954003
什么是DOI,文献DOI怎么找? 2168246
邀请新用户注册赠送积分活动 1186614
关于科研通互助平台的介绍 1093909