A feature-aware multimodal framework with auto-fusion for Alzheimer’s disease diagnosis

计算机科学 特征(语言学) 人工智能 疾病 多模态 融合 模式识别(心理学) 机器学习 医学 病理 万维网 语言学 哲学
作者
Meiwei Zhang,Qiushi Cui,Yang Lü,Wenyuan Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108740-108740 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108740
摘要

Alzheimer's disease (AD), one of the most common dementias, has about 4.6 million new cases yearly worldwide. Due to the significant amount of suspected AD patients, early screening for the disease has become particularly important. There are diversified types of AD diagnosis data, such as cognitive tests, images, and risk factors, many prior investigations have primarily concentrated on integrating only high-dimensional features and simple fusion concatenation, resulting in less-than-optimal outcomes for AD diagnosis. Therefore, We propose an enhanced multimodal AD diagnostic framework comprising a feature-aware module and an automatic model fusion strategy (AMFS). To preserve the correlation and significance features within a low-dimensional space, the feature-aware module employs a low-dimensional SHapley Additive exPlanation (SHAP) boosting feature selection as the initial step, following this analysis, diverse tiers of low-dimensional features are extracted from patients' biological data. Besides, in the high-dimensional stage, the feature-aware module integrates cross-modal attention mechanisms to capture subtle relationships among different cognitive domains, neuroimaging modalities, and risk factors. Subsequently, we integrate the aforementioned feature-aware module with graph convolutional networks (GCN) to address heterogeneous data in multimodal AD, while also possessing the capability to perceive relationships between different modalities. Lastly, our proposed AMFS autonomously learns optimal parameters for aligning two sub-models. The validation tests using two ADNI datasets show the high accuracies of 95.9% and 91.9% respectively, in AD diagnosis. The methods efficiently select features from multimodal AD data, optimizing model fusion for potential clinical assistance in diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研狗发布了新的文献求助10
1秒前
Wxl发布了新的文献求助10
1秒前
脑洞疼应助郑郑采纳,获得10
3秒前
4秒前
4秒前
甜美三娘完成签到,获得积分10
4秒前
Wangxiyao发布了新的文献求助10
6秒前
无辜听兰应助wf采纳,获得10
6秒前
江楠完成签到,获得积分10
6秒前
7秒前
秋半雪完成签到,获得积分10
7秒前
虚心的代丝完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
平常的寻真完成签到,获得积分10
8秒前
8秒前
真实的采白完成签到 ,获得积分10
9秒前
10秒前
科研通AI6应助Baibai采纳,获得10
10秒前
10秒前
10秒前
10秒前
无限完成签到 ,获得积分10
10秒前
清茶韵心发布了新的文献求助10
11秒前
11秒前
伯赏元彤发布了新的文献求助10
12秒前
深情安青应助鱼粥很好采纳,获得10
13秒前
ouo发布了新的文献求助10
13秒前
13秒前
充电宝应助sasa采纳,获得10
14秒前
大大小小发布了新的文献求助10
14秒前
14秒前
14秒前
swh发布了新的文献求助10
15秒前
段文天发布了新的文献求助10
15秒前
16秒前
三乐发布了新的文献求助10
16秒前
芸栖完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469254
求助须知:如何正确求助?哪些是违规求助? 4572366
关于积分的说明 14335510
捐赠科研通 4499281
什么是DOI,文献DOI怎么找? 2464986
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051