A feature-aware multimodal framework with auto-fusion for Alzheimer’s disease diagnosis

计算机科学 特征(语言学) 人工智能 疾病 多模态 融合 模式识别(心理学) 机器学习 医学 病理 万维网 哲学 语言学
作者
Meiwei Zhang,Qiushi Cui,Yang Lü,Wenyuan Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108740-108740 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108740
摘要

Alzheimer's disease (AD), one of the most common dementias, has about 4.6 million new cases yearly worldwide. Due to the significant amount of suspected AD patients, early screening for the disease has become particularly important. There are diversified types of AD diagnosis data, such as cognitive tests, images, and risk factors, many prior investigations have primarily concentrated on integrating only high-dimensional features and simple fusion concatenation, resulting in less-than-optimal outcomes for AD diagnosis. Therefore, We propose an enhanced multimodal AD diagnostic framework comprising a feature-aware module and an automatic model fusion strategy (AMFS). To preserve the correlation and significance features within a low-dimensional space, the feature-aware module employs a low-dimensional SHapley Additive exPlanation (SHAP) boosting feature selection as the initial step, following this analysis, diverse tiers of low-dimensional features are extracted from patients' biological data. Besides, in the high-dimensional stage, the feature-aware module integrates cross-modal attention mechanisms to capture subtle relationships among different cognitive domains, neuroimaging modalities, and risk factors. Subsequently, we integrate the aforementioned feature-aware module with graph convolutional networks (GCN) to address heterogeneous data in multimodal AD, while also possessing the capability to perceive relationships between different modalities. Lastly, our proposed AMFS autonomously learns optimal parameters for aligning two sub-models. The validation tests using two ADNI datasets show the high accuracies of 95.9% and 91.9% respectively, in AD diagnosis. The methods efficiently select features from multimodal AD data, optimizing model fusion for potential clinical assistance in diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rui发布了新的文献求助10
刚刚
刚刚
China发布了新的文献求助10
刚刚
刚刚
ryze完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
莉莉发布了新的文献求助10
2秒前
3秒前
3秒前
辣辣完成签到,获得积分10
3秒前
桐桐应助白华苍松采纳,获得10
3秒前
华仔应助啊嚯采纳,获得10
3秒前
yasan完成签到,获得积分10
3秒前
4秒前
Fsy完成签到,获得积分10
4秒前
万能图书馆应助China采纳,获得10
4秒前
杨欢完成签到,获得积分10
4秒前
Stanley发布了新的文献求助10
4秒前
哭泣爆米花完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
钰宁发布了新的文献求助10
5秒前
灵巧荆发布了新的文献求助10
5秒前
慕青应助juan采纳,获得10
6秒前
6秒前
白小白发布了新的文献求助10
6秒前
丘比特应助阳光莲小蓬采纳,获得10
6秒前
司徒迎曼发布了新的文献求助10
6秒前
6秒前
7秒前
liuliu发布了新的文献求助10
7秒前
7秒前
523发布了新的文献求助10
7秒前
popcorn完成签到,获得积分10
8秒前
C2完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762