清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A feature-aware multimodal framework with auto-fusion for Alzheimer’s disease diagnosis

计算机科学 特征(语言学) 人工智能 疾病 多模态 融合 模式识别(心理学) 机器学习 医学 病理 万维网 哲学 语言学
作者
Meiwei Zhang,Qiushi Cui,Yang Lü,Wenyuan Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108740-108740 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108740
摘要

Alzheimer's disease (AD), one of the most common dementias, has about 4.6 million new cases yearly worldwide. Due to the significant amount of suspected AD patients, early screening for the disease has become particularly important. There are diversified types of AD diagnosis data, such as cognitive tests, images, and risk factors, many prior investigations have primarily concentrated on integrating only high-dimensional features and simple fusion concatenation, resulting in less-than-optimal outcomes for AD diagnosis. Therefore, We propose an enhanced multimodal AD diagnostic framework comprising a feature-aware module and an automatic model fusion strategy (AMFS). To preserve the correlation and significance features within a low-dimensional space, the feature-aware module employs a low-dimensional SHapley Additive exPlanation (SHAP) boosting feature selection as the initial step, following this analysis, diverse tiers of low-dimensional features are extracted from patients' biological data. Besides, in the high-dimensional stage, the feature-aware module integrates cross-modal attention mechanisms to capture subtle relationships among different cognitive domains, neuroimaging modalities, and risk factors. Subsequently, we integrate the aforementioned feature-aware module with graph convolutional networks (GCN) to address heterogeneous data in multimodal AD, while also possessing the capability to perceive relationships between different modalities. Lastly, our proposed AMFS autonomously learns optimal parameters for aligning two sub-models. The validation tests using two ADNI datasets show the high accuracies of 95.9% and 91.9% respectively, in AD diagnosis. The methods efficiently select features from multimodal AD data, optimizing model fusion for potential clinical assistance in diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
实力不允许完成签到 ,获得积分10
49秒前
王浩伟完成签到 ,获得积分10
1分钟前
剑逍遥完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
2分钟前
3分钟前
3分钟前
席江海完成签到,获得积分10
3分钟前
3分钟前
科研狗的春天完成签到 ,获得积分10
3分钟前
3分钟前
华师发布了新的文献求助10
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
思源应助华师采纳,获得10
4分钟前
搜集达人应助为光采纳,获得10
5分钟前
hellozijia完成签到 ,获得积分10
5分钟前
5分钟前
为光发布了新的文献求助10
5分钟前
5分钟前
gszy1975发布了新的文献求助10
5分钟前
vitamin完成签到 ,获得积分10
5分钟前
科研通AI2S应助jyy采纳,获得20
5分钟前
大猫丶完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
最棒的懒羊羊完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
qq完成签到 ,获得积分10
6分钟前
liy41完成签到 ,获得积分10
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307441
求助须知:如何正确求助?哪些是违规求助? 2941053
关于积分的说明 8500320
捐赠科研通 2615430
什么是DOI,文献DOI怎么找? 1428912
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461