多硫化物
石墨烯
阳极
阴极
电解质
电化学
氧化物
电池(电)
锂(药物)
碳纤维
硫黄
材料科学
化学工程
锂硫电池
纳米技术
密度泛函理论
储能
化学
电极
复合材料
计算化学
物理化学
复合数
医学
内分泌学
功率(物理)
物理
量子力学
工程类
冶金
作者
J. Piñuela-Noval,Daniel Fernández González,Marta Súarez,Luis Felipe Verdeja González,Arcangelo Celeste,Adriano Pierini,Franco Mazzei,Maria Assunta Navarra,Sergio Brutti,Adolfo Fernández,Marco Agostini
标识
DOI:10.1002/cssc.202400554
摘要
Abstract Electrochemical energy storage systems based on sulfur and lithium can theoretically deliver high energy with the further benefit of low cost. However, the working mechanism of this device involves the dissolution of sulfur to high‐molecular weight lithium polysulfides (LiPs with general formula Li 2 S n , n≥4) in the electrolyte during the discharge process. Therefore, the resulting migration of partially dissociated LiPs by diffusion or under the effect of the electric field to the lithium anode, activates an internal shuttle mechanism, reduces the active material and in general leads to loss of performance and cycling stability. These drawbacks poses challenges to the commercialization of Li/S cells in the short term. In this study, we report on the decoration of reduced graphene oxide with MoO 3 particles to enhance interactions with LiPs and retain sulfur at the cathode side. The combination of experiments and density functional theory calculations demonstrated improvements in binding interactions between the cathode and sulfur species, enhancing the cycling stability of the Li/S cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI