Cobalt catalyzed carbonyl functionalization to boost the biodegradation of polyethylene by Bacillus velezensis C5

催化作用 表面改性 生物降解 聚乙烯 化学 巨芽孢杆菌 高分子化学 有机化学 细菌 生物 遗传学 物理化学
作者
Zequn Tang,Yilin Zhao,Zishuai Wang,Xianrui Liu,Yizhi Liu,Penghao Gu,Gang Xiao,Jan Baeyens,Haijia Su
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:495: 153226-153226
标识
DOI:10.1016/j.cej.2024.153226
摘要

Polyethylene plastics are widely used in daily life since known for their resistance to biodegradation, but posing a significant environmental challenge. The biodegradation of polyethylene can contribute to environmental protection and facilitate energy conservation, in comparison with physical or chemical methodologies. However, the stable and inert C–C bond structure of polyethylene limits biodegradation effectiveness, leading to a slow breakdown rate and extended life cycle. In this study, Co(acac)2 was used as a catalyst to generate free radicals that activated the interface of low-density polyethylene, resulting in the formation of oxygen-containing functional groups. Under the condition of Co(acac)2-mediated catalysis at 120 °C for 24 h, the carbonyl index of polyethylene rose from 0 to 2.99. The weight-average molecular weight of polyethylene was reduced by 8.77 % compared to the control, leading to the generation of small molecules. The density functional theory elucidated showed that the active oxygen substitution in the single electron transfer reaction was driven by the high-energy intermediate alkyl radical. The bond energy of the resulting carbonyl functional group (CO) is 76.4 % lower than that of the original C–C bond, making it more susceptible to cleavage and depolymerization. Following 90 d of biodegradation, the laccase activity showed a 25 % increase compared to the control, indicating an improved oxidase release by chemical oxidation. The weight loss of low-density polyethylene was 23.91 %, and the microbial degradation efficiency was 2.32 times higher. This strategy significantly improves the ability of microorganisms to degrade low-density polyethylene and is a novel approach to the design of pathways for the polyolefin degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
兰陵王发布了新的文献求助10
刚刚
1秒前
2秒前
nenoaowu发布了新的文献求助10
5秒前
Hope发布了新的文献求助10
7秒前
9秒前
2213sss发布了新的文献求助10
9秒前
10秒前
13秒前
威武灵萱关注了科研通微信公众号
13秒前
内向映天完成签到 ,获得积分10
13秒前
14秒前
跳跃凡桃完成签到 ,获得积分10
15秒前
CCL发布了新的文献求助10
16秒前
JianmaoChen发布了新的文献求助10
17秒前
20秒前
烟尘完成签到,获得积分10
21秒前
Huimin完成签到,获得积分10
22秒前
黑煤球完成签到,获得积分10
22秒前
威武灵萱发布了新的文献求助10
23秒前
24秒前
努力搬砖努力干完成签到,获得积分10
27秒前
研友_Lw7MKL发布了新的文献求助10
28秒前
隐形曼青应助biyeshunli采纳,获得10
29秒前
Hope完成签到,获得积分10
30秒前
31秒前
Owen应助Ji采纳,获得10
31秒前
木子木完成签到,获得积分10
31秒前
32秒前
pippitail完成签到 ,获得积分10
32秒前
桐桐完成签到,获得积分0
34秒前
昀云完成签到 ,获得积分10
34秒前
善学以致用应助echo采纳,获得10
36秒前
千里完成签到 ,获得积分10
36秒前
眼睛大雨筠应助陌上人采纳,获得30
37秒前
王一生完成签到,获得积分0
40秒前
42秒前
共享精神应助Flanker采纳,获得10
45秒前
pippitail关注了科研通微信公众号
46秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962948
求助须知:如何正确求助?哪些是违规求助? 3508915
关于积分的说明 11143982
捐赠科研通 3241808
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579