Cascaded matching based on detection box area for multi-object tracking

人工智能 计算机视觉 计算机科学 匹配(统计) 跟踪(教育) 视频跟踪 目标检测 对象(语法) 模式识别(心理学) 数学 统计 心理学 教育学
作者
Songbo Gu,Miaohui Zhang,Qiyang Xiao,Wentao Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112075-112075 被引量:4
标识
DOI:10.1016/j.knosys.2024.112075
摘要

In the existing tracking-by-detection paradigm, advanced approaches rely on appearance features to establish associations between current detections and trajectories. However, these methods are often plagued by issues such as sluggish tracking performance and suboptimal results, particularly when confronted with the unreliability of the appearance features. Considering these challenges, we propose a novel cascaded matching algorithm called the detection box area-based tracking algorithm (DBAT), which groups the detection boxes by area size and associates detections within each group in a cascaded manner. To enhance the accuracy of grouping, we introduce two crucial components to enhance the quality of detections: the compressed self-decoding module (CSDM) and the task collaboration module (TCM). To acquire more precise location information and augment feature richness, CSDM decomposes the input features into two one-dimensional feature encodings and one two-dimensional feature encoding. Subsequently, these feature encodings perform feature aggregation along both spatial directions to capture long-range dependencies and refine the accuracy of location information. Ultimately, these aggregated features engage with the original features, facilitating information fusion and elevating the overall feature representation. To alleviate potential conflicts between various tasks and bolster task-specific representations, TCM combines disparate receptive fields and decouples features through self-relationship and cross-relationship mappings, thereby concurrently enhancing learning across different tasks. Extensive experiments demonstrate that our proposed method achieves performance comparable to state-of-the-art methods on the MOT17, MOT20 and DanceTrack benchmark tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
choaiho发布了新的文献求助10
刚刚
1秒前
1秒前
奔波霸完成签到 ,获得积分10
2秒前
万能图书馆应助wuke采纳,获得10
3秒前
3秒前
夜雨清痕y发布了新的文献求助10
4秒前
正直猫咪完成签到,获得积分20
5秒前
fangyuan应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
7秒前
fangyuan应助科研通管家采纳,获得10
7秒前
pluto应助读书的时候采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
情怀应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
烟花应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
脑洞疼应助Shawn采纳,获得10
8秒前
z182052237完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
思柔完成签到,获得积分10
11秒前
张先生发布了新的文献求助10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661