Cascaded matching based on detection box area for multi-object tracking

人工智能 计算机视觉 计算机科学 匹配(统计) 跟踪(教育) 视频跟踪 目标检测 对象(语法) 模式识别(心理学) 数学 统计 心理学 教育学
作者
Songbo Gu,Miaohui Zhang,Qiyang Xiao,Wentao Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112075-112075 被引量:4
标识
DOI:10.1016/j.knosys.2024.112075
摘要

In the existing tracking-by-detection paradigm, advanced approaches rely on appearance features to establish associations between current detections and trajectories. However, these methods are often plagued by issues such as sluggish tracking performance and suboptimal results, particularly when confronted with the unreliability of the appearance features. Considering these challenges, we propose a novel cascaded matching algorithm called the detection box area-based tracking algorithm (DBAT), which groups the detection boxes by area size and associates detections within each group in a cascaded manner. To enhance the accuracy of grouping, we introduce two crucial components to enhance the quality of detections: the compressed self-decoding module (CSDM) and the task collaboration module (TCM). To acquire more precise location information and augment feature richness, CSDM decomposes the input features into two one-dimensional feature encodings and one two-dimensional feature encoding. Subsequently, these feature encodings perform feature aggregation along both spatial directions to capture long-range dependencies and refine the accuracy of location information. Ultimately, these aggregated features engage with the original features, facilitating information fusion and elevating the overall feature representation. To alleviate potential conflicts between various tasks and bolster task-specific representations, TCM combines disparate receptive fields and decouples features through self-relationship and cross-relationship mappings, thereby concurrently enhancing learning across different tasks. Extensive experiments demonstrate that our proposed method achieves performance comparable to state-of-the-art methods on the MOT17, MOT20 and DanceTrack benchmark tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
爱吃菠萝蜜完成签到,获得积分10
3秒前
3秒前
浮游应助Yanjjjjyun采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
宋浩奇完成签到,获得积分10
5秒前
6秒前
6秒前
王康发布了新的文献求助10
7秒前
隐形曼青应助Daniel2010采纳,获得10
7秒前
DY驳回了英姑应助
8秒前
精灵夜雨完成签到,获得积分10
8秒前
宋浩奇发布了新的文献求助10
9秒前
iNk应助欧皇采纳,获得10
9秒前
9秒前
9秒前
Tyler发布了新的文献求助10
11秒前
11秒前
科研通AI6应助sifLiu采纳,获得10
11秒前
11秒前
害羞彩虹完成签到,获得积分20
12秒前
没有名称完成签到,获得积分10
12秒前
12秒前
王康完成签到,获得积分10
13秒前
13秒前
冷傲迎梦发布了新的文献求助10
14秒前
搜集达人应助111版采纳,获得10
16秒前
wanwusheng完成签到,获得积分10
18秒前
WUJIAYU完成签到,获得积分10
19秒前
21秒前
suger完成签到,获得积分10
22秒前
25秒前
蔺蔺发布了新的文献求助10
26秒前
26秒前
27秒前
28秒前
Yu完成签到,获得积分20
28秒前
废寝忘食发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415163
求助须知:如何正确求助?哪些是违规求助? 4531822
关于积分的说明 14130468
捐赠科研通 4447366
什么是DOI,文献DOI怎么找? 2439667
邀请新用户注册赠送积分活动 1431779
关于科研通互助平台的介绍 1409365