Cascaded matching based on detection box area for multi-object tracking

人工智能 计算机视觉 计算机科学 匹配(统计) 跟踪(教育) 视频跟踪 目标检测 对象(语法) 模式识别(心理学) 数学 统计 心理学 教育学
作者
Songbo Gu,Miaohui Zhang,Qiyang Xiao,Wentao Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112075-112075 被引量:4
标识
DOI:10.1016/j.knosys.2024.112075
摘要

In the existing tracking-by-detection paradigm, advanced approaches rely on appearance features to establish associations between current detections and trajectories. However, these methods are often plagued by issues such as sluggish tracking performance and suboptimal results, particularly when confronted with the unreliability of the appearance features. Considering these challenges, we propose a novel cascaded matching algorithm called the detection box area-based tracking algorithm (DBAT), which groups the detection boxes by area size and associates detections within each group in a cascaded manner. To enhance the accuracy of grouping, we introduce two crucial components to enhance the quality of detections: the compressed self-decoding module (CSDM) and the task collaboration module (TCM). To acquire more precise location information and augment feature richness, CSDM decomposes the input features into two one-dimensional feature encodings and one two-dimensional feature encoding. Subsequently, these feature encodings perform feature aggregation along both spatial directions to capture long-range dependencies and refine the accuracy of location information. Ultimately, these aggregated features engage with the original features, facilitating information fusion and elevating the overall feature representation. To alleviate potential conflicts between various tasks and bolster task-specific representations, TCM combines disparate receptive fields and decouples features through self-relationship and cross-relationship mappings, thereby concurrently enhancing learning across different tasks. Extensive experiments demonstrate that our proposed method achieves performance comparable to state-of-the-art methods on the MOT17, MOT20 and DanceTrack benchmark tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四季安完成签到 ,获得积分10
刚刚
华杰发布了新的文献求助10
刚刚
丘比特应助shuangcheng采纳,获得10
1秒前
PhD_Essence完成签到,获得积分10
1秒前
开心完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
LILI2完成签到 ,获得积分10
2秒前
橙熟完成签到,获得积分10
2秒前
毛球收藏家完成签到,获得积分10
3秒前
Li完成签到,获得积分10
3秒前
xiaoqianqian174完成签到,获得积分10
3秒前
线条完成签到 ,获得积分10
4秒前
4秒前
健忘捕完成签到 ,获得积分10
4秒前
蔡布布完成签到,获得积分10
4秒前
虞无剑发布了新的文献求助30
4秒前
123完成签到 ,获得积分10
4秒前
夏夏完成签到,获得积分10
4秒前
完美世界应助XF采纳,获得10
5秒前
是小浩啊完成签到,获得积分10
5秒前
风国之境完成签到,获得积分10
5秒前
Akim应助华杰采纳,获得10
5秒前
6秒前
6秒前
liurenmm发布了新的文献求助10
6秒前
Allen发布了新的文献求助10
6秒前
6秒前
7秒前
坚强桐完成签到,获得积分10
7秒前
隐形曼青应助王建采纳,获得10
7秒前
7秒前
马薄函完成签到,获得积分10
7秒前
顾矜应助玉玲子LIN采纳,获得30
7秒前
打打应助赵浩杰采纳,获得10
7秒前
8秒前
ll完成签到 ,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568540
求助须知:如何正确求助?哪些是违规求助? 4653148
关于积分的说明 14704472
捐赠科研通 4594943
什么是DOI,文献DOI怎么找? 2521424
邀请新用户注册赠送积分活动 1493006
关于科研通互助平台的介绍 1463793