Cascaded matching based on detection box area for multi-object tracking

人工智能 计算机视觉 计算机科学 匹配(统计) 跟踪(教育) 视频跟踪 目标检测 对象(语法) 模式识别(心理学) 数学 统计 心理学 教育学
作者
Songbo Gu,Miaohui Zhang,Qiyang Xiao,Wentao Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112075-112075
标识
DOI:10.1016/j.knosys.2024.112075
摘要

In the existing tracking-by-detection paradigm, advanced approaches rely on appearance features to establish associations between current detections and trajectories. However, these methods are often plagued by issues such as sluggish tracking performance and suboptimal results, particularly when confronted with the unreliability of the appearance features. Considering these challenges, we propose a novel cascaded matching algorithm called the detection box area-based tracking algorithm (DBAT), which groups the detection boxes by area size and associates detections within each group in a cascaded manner. To enhance the accuracy of grouping, we introduce two crucial components to enhance the quality of detections: the compressed self-decoding module (CSDM) and the task collaboration module (TCM). To acquire more precise location information and augment feature richness, CSDM decomposes the input features into two one-dimensional feature encodings and one two-dimensional feature encoding. Subsequently, these feature encodings perform feature aggregation along both spatial directions to capture long-range dependencies and refine the accuracy of location information. Ultimately, these aggregated features engage with the original features, facilitating information fusion and elevating the overall feature representation. To alleviate potential conflicts between various tasks and bolster task-specific representations, TCM combines disparate receptive fields and decouples features through self-relationship and cross-relationship mappings, thereby concurrently enhancing learning across different tasks. Extensive experiments demonstrate that our proposed method achieves performance comparable to state-of-the-art methods on the MOT17, MOT20 and DanceTrack benchmark tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
maolizi完成签到,获得积分10
刚刚
xiaohunagya完成签到,获得积分10
刚刚
ppyunyi完成签到,获得积分20
刚刚
LeslieWK完成签到,获得积分10
1秒前
飘逸的念烟完成签到,获得积分20
1秒前
Annabelle完成签到,获得积分10
1秒前
亳亳完成签到 ,获得积分10
1秒前
Kuhn_W完成签到,获得积分10
3秒前
3秒前
3秒前
LX发布了新的文献求助10
3秒前
传奇3应助reform采纳,获得10
3秒前
wys完成签到 ,获得积分10
3秒前
4秒前
小卢同学完成签到,获得积分10
4秒前
ouczl完成签到,获得积分10
4秒前
兰格格完成签到,获得积分10
5秒前
z.完成签到,获得积分10
6秒前
6秒前
ding应助岗吉采纳,获得10
7秒前
7秒前
在水一方应助迷路的鹤轩采纳,获得10
7秒前
WHY发布了新的文献求助10
7秒前
晨曦完成签到,获得积分10
8秒前
漠北发布了新的文献求助10
8秒前
sx发布了新的文献求助10
8秒前
9秒前
9秒前
啦啦啦啦啦完成签到,获得积分10
10秒前
天才罗完成签到 ,获得积分10
10秒前
csxx发布了新的文献求助10
12秒前
田様应助寒冷银耳汤采纳,获得10
12秒前
zhangpeng发布了新的文献求助10
13秒前
13秒前
无奈抽屉完成签到 ,获得积分10
13秒前
阿玛迪乌斯完成签到,获得积分10
13秒前
奕初阳完成签到,获得积分10
14秒前
科研通AI2S应助zdnhri采纳,获得10
15秒前
赫奇帕奇的牙医完成签到 ,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147394
求助须知:如何正确求助?哪些是违规求助? 2798622
关于积分的说明 7830067
捐赠科研通 2455346
什么是DOI,文献DOI怎么找? 1306770
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587