Cascaded matching based on detection box area for multi-object tracking

人工智能 计算机视觉 计算机科学 匹配(统计) 跟踪(教育) 视频跟踪 目标检测 对象(语法) 模式识别(心理学) 数学 统计 心理学 教育学
作者
Songbo Gu,Miaohui Zhang,Qiyang Xiao,Wentao Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112075-112075 被引量:4
标识
DOI:10.1016/j.knosys.2024.112075
摘要

In the existing tracking-by-detection paradigm, advanced approaches rely on appearance features to establish associations between current detections and trajectories. However, these methods are often plagued by issues such as sluggish tracking performance and suboptimal results, particularly when confronted with the unreliability of the appearance features. Considering these challenges, we propose a novel cascaded matching algorithm called the detection box area-based tracking algorithm (DBAT), which groups the detection boxes by area size and associates detections within each group in a cascaded manner. To enhance the accuracy of grouping, we introduce two crucial components to enhance the quality of detections: the compressed self-decoding module (CSDM) and the task collaboration module (TCM). To acquire more precise location information and augment feature richness, CSDM decomposes the input features into two one-dimensional feature encodings and one two-dimensional feature encoding. Subsequently, these feature encodings perform feature aggregation along both spatial directions to capture long-range dependencies and refine the accuracy of location information. Ultimately, these aggregated features engage with the original features, facilitating information fusion and elevating the overall feature representation. To alleviate potential conflicts between various tasks and bolster task-specific representations, TCM combines disparate receptive fields and decouples features through self-relationship and cross-relationship mappings, thereby concurrently enhancing learning across different tasks. Extensive experiments demonstrate that our proposed method achieves performance comparable to state-of-the-art methods on the MOT17, MOT20 and DanceTrack benchmark tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xingdianwei发布了新的文献求助10
刚刚
刚刚
1秒前
xmj完成签到,获得积分10
1秒前
oRANGE发布了新的文献求助20
2秒前
乌苏苏发布了新的文献求助10
2秒前
2秒前
哈哈哈发布了新的文献求助10
2秒前
南桥完成签到,获得积分10
2秒前
4秒前
一牧牧完成签到,获得积分10
4秒前
Janiuh发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
1111发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
深情安青应助清飞采纳,获得10
6秒前
7秒前
画檐蛛网发布了新的文献求助10
7秒前
defu完成签到,获得积分10
7秒前
蒸馏水发布了新的文献求助10
8秒前
zjh11143发布了新的文献求助20
9秒前
SciGPT应助Ethereal采纳,获得10
9秒前
俭朴从寒发布了新的文献求助10
10秒前
10秒前
10秒前
橘子完成签到,获得积分10
10秒前
tao发布了新的文献求助10
11秒前
12秒前
Heyouatpome发布了新的文献求助20
12秒前
12秒前
12秒前
12秒前
zyy发布了新的文献求助10
12秒前
烟花应助1111采纳,获得10
12秒前
华年完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624