Cascaded matching based on detection box area for multi-object tracking

人工智能 计算机视觉 计算机科学 匹配(统计) 跟踪(教育) 视频跟踪 目标检测 对象(语法) 模式识别(心理学) 数学 统计 心理学 教育学
作者
Songbo Gu,Miaohui Zhang,Qiyang Xiao,Wentao Shi
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 112075-112075
标识
DOI:10.1016/j.knosys.2024.112075
摘要

In the existing tracking-by-detection paradigm, advanced approaches rely on appearance features to establish associations between current detections and trajectories. However, these methods are often plagued by issues such as sluggish tracking performance and suboptimal results, particularly when confronted with the unreliability of the appearance features. Considering these challenges, we propose a novel cascaded matching algorithm called the detection box area-based tracking algorithm (DBAT), which groups the detection boxes by area size and associates detections within each group in a cascaded manner. To enhance the accuracy of grouping, we introduce two crucial components to enhance the quality of detections: the compressed self-decoding module (CSDM) and the task collaboration module (TCM). To acquire more precise location information and augment feature richness, CSDM decomposes the input features into two one-dimensional feature encodings and one two-dimensional feature encoding. Subsequently, these feature encodings perform feature aggregation along both spatial directions to capture long-range dependencies and refine the accuracy of location information. Ultimately, these aggregated features engage with the original features, facilitating information fusion and elevating the overall feature representation. To alleviate potential conflicts between various tasks and bolster task-specific representations, TCM combines disparate receptive fields and decouples features through self-relationship and cross-relationship mappings, thereby concurrently enhancing learning across different tasks. Extensive experiments demonstrate that our proposed method achieves performance comparable to state-of-the-art methods on the MOT17, MOT20 and DanceTrack benchmark tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Hexagram采纳,获得10
刚刚
yyyyyyy发布了新的文献求助10
刚刚
沉默是金12完成签到 ,获得积分10
刚刚
西大门官人完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
科研小白发布了新的文献求助10
1秒前
2秒前
2秒前
bkagyin应助DJ采纳,获得10
2秒前
4秒前
顾矜应助Noah采纳,获得30
4秒前
搜集达人应助Noah采纳,获得10
4秒前
彭于晏应助Noah采纳,获得10
4秒前
晶晶在努力完成签到 ,获得积分10
4秒前
小二郎应助Noah采纳,获得10
4秒前
小马甲应助Noah采纳,获得10
4秒前
共享精神应助Noah采纳,获得10
4秒前
大模型应助Noah采纳,获得10
4秒前
领导范儿应助Noah采纳,获得10
4秒前
FashionBoy应助Noah采纳,获得10
4秒前
充电宝应助Noah采纳,获得10
4秒前
思源应助刻苦的元风采纳,获得10
5秒前
6秒前
6秒前
7秒前
桐桐应助知无涯者采纳,获得10
7秒前
张豪杰发布了新的文献求助10
8秒前
8秒前
山前发布了新的文献求助10
9秒前
柯一一应助艺术家脾气采纳,获得10
9秒前
10秒前
绝世镜天完成签到 ,获得积分10
10秒前
酷波er应助ascf采纳,获得10
10秒前
zy发布了新的文献求助30
10秒前
万能图书馆应助科研小白采纳,获得10
11秒前
11秒前
12秒前
科研小子发布了新的文献求助30
13秒前
Owen应助阿波罗光之子采纳,获得30
14秒前
beituo发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226