Cascaded matching based on detection box area for multi-object tracking

人工智能 计算机视觉 计算机科学 匹配(统计) 跟踪(教育) 视频跟踪 目标检测 对象(语法) 模式识别(心理学) 数学 统计 心理学 教育学
作者
Songbo Gu,Miaohui Zhang,Qiyang Xiao,Wentao Shi
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 112075-112075 被引量:4
标识
DOI:10.1016/j.knosys.2024.112075
摘要

In the existing tracking-by-detection paradigm, advanced approaches rely on appearance features to establish associations between current detections and trajectories. However, these methods are often plagued by issues such as sluggish tracking performance and suboptimal results, particularly when confronted with the unreliability of the appearance features. Considering these challenges, we propose a novel cascaded matching algorithm called the detection box area-based tracking algorithm (DBAT), which groups the detection boxes by area size and associates detections within each group in a cascaded manner. To enhance the accuracy of grouping, we introduce two crucial components to enhance the quality of detections: the compressed self-decoding module (CSDM) and the task collaboration module (TCM). To acquire more precise location information and augment feature richness, CSDM decomposes the input features into two one-dimensional feature encodings and one two-dimensional feature encoding. Subsequently, these feature encodings perform feature aggregation along both spatial directions to capture long-range dependencies and refine the accuracy of location information. Ultimately, these aggregated features engage with the original features, facilitating information fusion and elevating the overall feature representation. To alleviate potential conflicts between various tasks and bolster task-specific representations, TCM combines disparate receptive fields and decouples features through self-relationship and cross-relationship mappings, thereby concurrently enhancing learning across different tasks. Extensive experiments demonstrate that our proposed method achieves performance comparable to state-of-the-art methods on the MOT17, MOT20 and DanceTrack benchmark tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助RC_Wang采纳,获得10
刚刚
Joker_Li完成签到,获得积分10
刚刚
贺兰鸵鸟完成签到,获得积分10
刚刚
伶俐一曲完成签到,获得积分10
1秒前
777完成签到,获得积分10
1秒前
1秒前
1秒前
ye完成签到,获得积分10
1秒前
2秒前
壮观的垣完成签到,获得积分10
2秒前
火狐狸kc完成签到,获得积分10
2秒前
Alanni完成签到 ,获得积分10
2秒前
lcc李川川发布了新的文献求助10
2秒前
鲨鱼辣椒完成签到,获得积分10
2秒前
luoziwuhui完成签到,获得积分10
3秒前
cara完成签到,获得积分10
3秒前
李健的小迷弟应助suyu采纳,获得10
3秒前
科研通AI6应助eco采纳,获得10
3秒前
任梓宁发布了新的文献求助10
3秒前
风信子发布了新的文献求助10
3秒前
男男完成签到,获得积分10
3秒前
4秒前
5秒前
愉快的孤容完成签到,获得积分10
6秒前
南城忆潇湘完成签到,获得积分10
6秒前
deng完成签到 ,获得积分10
6秒前
哈哈完成签到,获得积分10
7秒前
12138完成签到,获得积分10
7秒前
7秒前
淡然柚子发布了新的文献求助10
7秒前
糊糊完成签到 ,获得积分10
7秒前
火星上的柏柳完成签到 ,获得积分10
7秒前
qqdm完成签到 ,获得积分0
8秒前
8秒前
蘅大爷完成签到,获得积分10
8秒前
zhangjin2969完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
小诗完成签到,获得积分10
9秒前
9秒前
大胆笑翠完成签到,获得积分10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118540
求助须知:如何正确求助?哪些是违规求助? 4324484
关于积分的说明 13472435
捐赠科研通 4157565
什么是DOI,文献DOI怎么找? 2278471
邀请新用户注册赠送积分活动 1280221
关于科研通互助平台的介绍 1218949