亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cascaded matching based on detection box area for multi-object tracking

人工智能 计算机视觉 计算机科学 匹配(统计) 跟踪(教育) 视频跟踪 目标检测 对象(语法) 模式识别(心理学) 数学 统计 心理学 教育学
作者
Songbo Gu,Miaohui Zhang,Qiyang Xiao,Wentao Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112075-112075 被引量:4
标识
DOI:10.1016/j.knosys.2024.112075
摘要

In the existing tracking-by-detection paradigm, advanced approaches rely on appearance features to establish associations between current detections and trajectories. However, these methods are often plagued by issues such as sluggish tracking performance and suboptimal results, particularly when confronted with the unreliability of the appearance features. Considering these challenges, we propose a novel cascaded matching algorithm called the detection box area-based tracking algorithm (DBAT), which groups the detection boxes by area size and associates detections within each group in a cascaded manner. To enhance the accuracy of grouping, we introduce two crucial components to enhance the quality of detections: the compressed self-decoding module (CSDM) and the task collaboration module (TCM). To acquire more precise location information and augment feature richness, CSDM decomposes the input features into two one-dimensional feature encodings and one two-dimensional feature encoding. Subsequently, these feature encodings perform feature aggregation along both spatial directions to capture long-range dependencies and refine the accuracy of location information. Ultimately, these aggregated features engage with the original features, facilitating information fusion and elevating the overall feature representation. To alleviate potential conflicts between various tasks and bolster task-specific representations, TCM combines disparate receptive fields and decouples features through self-relationship and cross-relationship mappings, thereby concurrently enhancing learning across different tasks. Extensive experiments demonstrate that our proposed method achieves performance comparable to state-of-the-art methods on the MOT17, MOT20 and DanceTrack benchmark tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
姜姜发布了新的文献求助20
5秒前
烟消云散发布了新的文献求助10
7秒前
CipherSage应助科研通管家采纳,获得10
17秒前
17秒前
20秒前
姚老表发布了新的文献求助100
21秒前
22秒前
joe完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
26秒前
Future完成签到 ,获得积分10
26秒前
Yu发布了新的文献求助10
28秒前
30秒前
小蘑菇应助輕瘋采纳,获得10
32秒前
善学以致用应助Yu采纳,获得10
34秒前
徐矜发布了新的文献求助10
36秒前
七点半完成签到,获得积分10
36秒前
59秒前
情怀应助一直很随意采纳,获得10
1分钟前
1分钟前
我是老大应助Rainy采纳,获得10
1分钟前
1分钟前
烟花应助一直很随意采纳,获得10
1分钟前
1分钟前
yb完成签到,获得积分10
1分钟前
怀民完成签到 ,获得积分10
1分钟前
olekravchenko发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
无尽夏完成签到 ,获得积分10
1分钟前
等待寄云完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
我哪知道怎么完成签到 ,获得积分10
2分钟前
可可完成签到 ,获得积分10
2分钟前
YJY完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763940
求助须知:如何正确求助?哪些是违规求助? 5545976
关于积分的说明 15405652
捐赠科研通 4899452
什么是DOI,文献DOI怎么找? 2635572
邀请新用户注册赠送积分活动 1583750
关于科研通互助平台的介绍 1538864