飞轮
转子(电动)
复合数
储能
飞轮储能
材料科学
机械工程
计算机科学
结构工程
复合材料
物理
工程类
热力学
功率(物理)
作者
Yajun Wang,Mingming He,Rui Zhang,Haosui Zhang,Yibing Liu
标识
DOI:10.1177/16878132241249860
摘要
Dynamic analysis is a key problem of flywheel energy storage system (FESS). In this paper, a one-dimensional finite element model of anisotropic composite flywheel energy storage rotor is established for the composite FESS, and the dynamic characteristics such as natural frequency and critical speed are calculated. Through the analysis of acceleration transient response, it is found that the flywheel rotor have two critical speeds during acceleration or deceleration process, which are prone to resonance and damage the bearing. Therefore, in order to avoid resonance or reduce resonance peak, the influence of bearing support stiffness, damping and speed-up rate on the critical speed and resonance peak is studied. The calculation results show that the first two order critical speed are affected by the support stiffness. When the stiffness increases, the critical speed of the flywheel rotor increases, but the growth rate decreases. When the damping increases, the critical speed is basically not affected, and the vibration amplitude decreases rapidly. In addition, the resonance peak value of transient response can be effectively reduced by increasing the speed-up rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI