清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accurate Blood Pressure Measurement Using Smartphone's Built-in Accelerometer

计算机科学 光容积图 加速度计 实时计算 人工智能 软件可移植性 可穿戴技术 可穿戴计算机 滤波器(信号处理) 嵌入式系统 计算机视觉 操作系统 程序设计语言
作者
Lei Wang,Xingwei Wang,Yu Zhang,Xiaolei Ma,Haipeng Dai,Yong Zhang,Zhijun Li,Tao Gu
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:8 (2): 1-28
标识
DOI:10.1145/3659599
摘要

Efficient blood pressure (BP) monitoring in everyday contexts stands as a substantial public health challenge that has garnered considerable attention from both industry and academia. Commercial mobile phones have emerged as a promising tool for BP measurement, benefitting from their widespread popularity, portability, and ease of use. Most mobile phone-based systems leverage a combination of the built-in camera and LED to capture photoplethysmography (PPG) signals, which can be used to infer BP by analyzing the blood flow characteristics. However, due to low Signal-to-Noise (SNR), various factors such as finger motion, improper finger placement, skin tattoos, or fluctuations in environmental lighting can distort the PPG signal. These distortions consequentially affect the performance of BP estimation. In this paper, we introduce a novel sensing system that utilizes the built-in accelerometer of a mobile phone to capture seismocardiography (SCG) signals, enabling accurate BP measurement. Our system surpasses previous mobile phone-based BP measurement systems, offering advantages such as high SNR, ease of use, and power efficiency. We propose a triple-stage noise reduction scheme, integrating improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), recursive least squares (RLS) adaptive filter, and soft-thresholding, to effectively reconstruct high-quality heartbeat waveforms from initially contaminated raw SCG signals. Moreover, we introduce a data augmentation technique encompassing normalization coupled with temporal-sliding, effectively augmenting the diversity of the training sample set. To enable battery efficiency on smartphone, we propose a resource-efficient deep learning model that incorporates resource-efficient convolution, shortcut connections, and Huber loss. We conduct extensive experiments with 70 volunteers, comprising 35 healthy individuals and 35 individuals diagnosed with hypertension, under a user-independent setting. The excellent performance of our system demonstrates its capacity for robust and accurate daily BP measurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
黑球发布了新的文献求助10
32秒前
57秒前
GankhuyagJavzan完成签到,获得积分10
59秒前
Polymer72发布了新的文献求助30
1分钟前
1分钟前
Youlu发布了新的文献求助10
1分钟前
1分钟前
英姑应助Polymer72采纳,获得30
1分钟前
huangzsdy完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
粗暴的坤完成签到 ,获得积分10
3分钟前
研友_8Y26PL完成签到 ,获得积分10
3分钟前
十四行诗发布了新的文献求助20
3分钟前
3分钟前
Polymer72发布了新的文献求助30
3分钟前
CipherSage应助Polymer72采纳,获得30
4分钟前
Kylin完成签到,获得积分10
4分钟前
酷波er应助bj采纳,获得10
4分钟前
十四行诗完成签到 ,获得积分10
4分钟前
iii完成签到 ,获得积分10
4分钟前
4分钟前
FFFFFF完成签到 ,获得积分10
4分钟前
qq完成签到 ,获得积分10
4分钟前
bj发布了新的文献求助10
4分钟前
充电宝应助bj采纳,获得10
5分钟前
5分钟前
5分钟前
Polymer72发布了新的文献求助30
5分钟前
852应助Polymer72采纳,获得30
5分钟前
Yelanjiao完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
舒适怀寒完成签到 ,获得积分10
6分钟前
像我这样抽象的人完成签到,获得积分10
6分钟前
6分钟前
飞云完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335403
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614183
捐赠科研通 2643375
什么是DOI,文献DOI怎么找? 1447427
科研通“疑难数据库(出版商)”最低求助积分说明 670615
邀请新用户注册赠送积分活动 658991