Optimization of Radial Electrodynamic Bearing Using Artificial Neural Network

人工神经网络 多物理 计算机科学 灵敏度(控制系统) 方位(导航) MATLAB语言 刚度 人工智能 有限元法 工程类 结构工程 电子工程 操作系统
作者
D. K. Supreeth,Siddappa I. Bekinal,R. C. Shivamurthy
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 67957-67970 被引量:1
标识
DOI:10.1109/access.2024.3400153
摘要

This article focuses on the prediction of essential bearing characteristics and optimization of electrodynamic bearing (EDB). Initially, a sensitivity analysis was conducted, manipulating key design parameters to assess their impact on electric pole frequency (ω), stiffness ( k ), and damping ( c ). Subsequently, the data derived from the sensitivity analysis was employed as input for training an artificial neural network (ANN) model. The ANN model was developed and trained with six inputs using various algorithms and different hidden neuron configurations to forecast essential bearing characteristics. Three distinct artificial neural network models (for ω, c and k) were created. Notably, Bayesian Regularization with 10 hidden neurons exhibited superior performance, demonstrating the least average error. In the final stage, the ANN model was utilized to optimize the EDB through the Bonobo Optimization (BO) algorithm in MATLAB. The optimization results were validated using COMSOL Multiphysics, where essential bearing characteristics were determined by fitting an analytical model to simulation outcomes. These outcomes were then compared with the ANN model predictions, affirming the applicability of ANN models in both predicting and optimizing EDB performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaaa发布了新的文献求助10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
光影相生应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
6秒前
不懈奋进应助tyx采纳,获得30
6秒前
光影相生应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
shanika应助aaaaaa采纳,获得10
7秒前
在水一方应助aaaaaa采纳,获得10
7秒前
7秒前
忆枫发布了新的文献求助10
8秒前
12345发布了新的文献求助10
9秒前
10秒前
10秒前
yar应助lixinyue采纳,获得10
11秒前
pluto应助超帅亦寒采纳,获得30
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432