A selective harvesting robot for cherry tomatoes: Design, development, field evaluation analysis

花梗 机器人 温室 机器人末端执行器 人口 人工智能 点云 工程类 农业工程 计算机科学 模拟 计算机视觉 园艺 生物 人口学 社会学
作者
Jiacheng Rong,Lin Hu,Hui Zhou,Guanglin Dai,Ting Yuan,Pengbo Wang
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22377
摘要

Abstract With the aging population and increasing labor costs, traditional manual harvesting methods have become less economically efficient. Consequently, research into fully automated harvesting using selective harvesting robots for cherry tomatoes has become a hot topic. However, most of the current research is focused on individual harvesting of large tomatoes, and there is less research on the development of complete systems for harvesting cherry tomatoes in clusters. The purpose of this study is to develop a harvesting robot system capable of picking tomato clusters by cutting their fruit‐bearing pedicels and to evaluate the robot prototype in real greenhouse environments. First, to enhance the grasping stability, a novel end‐effector was designed. This end‐effector utilizes a cam mechanism to achieve asynchronous actions of cutting and grasping with only one power source. Subsequently, a visual perception system was developed to locate the cutting points of the pedicels. This system is divided into two parts: rough positioning of the fruits in the far‐range view and accurate positioning of the cutting points of the pedicels in the close‐range view. Furthermore, it possesses the capability to adaptively infer the approaching pose of the end‐effector based on point cloud features extracted from fruit‐bearing pedicels and stems. Finally, a prototype of the tomato‐harvesting robot was assembled for field trials. The test results demonstrate that in tomato clusters with unobstructed pedicels, the localization success rates for the cutting points were 88.5% and 83.7% in the two greenhouses, respectively, while the harvesting success rates reached 57.7% and 55.4%, respectively. The average cycle time to harvest a tomato cluster was 24 s. The experimental results prove the potential for commercial application of the developed tomato‐harvesting robot and through the analysis of failure cases, discuss directions for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili发布了新的文献求助10
1秒前
乾雨发布了新的文献求助10
2秒前
wendydqw完成签到 ,获得积分10
2秒前
卞卞发布了新的文献求助10
3秒前
研友_VZG7GZ应助开朗的觅柔采纳,获得10
4秒前
渔婆完成签到,获得积分10
5秒前
无限雨南完成签到,获得积分10
5秒前
语青完成签到,获得积分10
5秒前
5秒前
刚得力完成签到,获得积分10
6秒前
bkagyin应助徐小二采纳,获得10
6秒前
hs完成签到,获得积分10
7秒前
7秒前
博学而多问完成签到 ,获得积分10
8秒前
Lc完成签到,获得积分10
8秒前
10秒前
Squirrel完成签到,获得积分10
10秒前
ZS发布了新的文献求助10
10秒前
11秒前
lobster完成签到,获得积分10
11秒前
十药九茯苓完成签到,获得积分10
11秒前
HongJiang完成签到,获得积分10
11秒前
果粒儿完成签到 ,获得积分10
11秒前
wwww完成签到,获得积分10
11秒前
迷路海蓝完成签到,获得积分10
12秒前
江上完成签到 ,获得积分10
12秒前
Marco21完成签到,获得积分20
14秒前
my完成签到 ,获得积分10
14秒前
15秒前
沉静从凝完成签到 ,获得积分10
16秒前
徐小二完成签到,获得积分10
16秒前
bubble嘞完成签到 ,获得积分10
16秒前
HalloYa完成签到 ,获得积分10
17秒前
123完成签到,获得积分10
17秒前
善学以致用应助----采纳,获得10
17秒前
充电宝应助----采纳,获得10
17秒前
科研通AI2S应助优雅涔雨采纳,获得10
18秒前
zhouzhou完成签到 ,获得积分10
19秒前
Marco21发布了新的文献求助10
19秒前
张先伟完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134243
求助须知:如何正确求助?哪些是违规求助? 2785100
关于积分的说明 7770199
捐赠科研通 2440666
什么是DOI,文献DOI怎么找? 1297493
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792