A selective harvesting robot for cherry tomatoes: Design, development, field evaluation analysis

花梗 机器人 温室 机器人末端执行器 人口 人工智能 点云 工程类 农业工程 计算机科学 模拟 计算机视觉 园艺 生物 社会学 人口学
作者
Jiacheng Rong,Lin Hu,Hui Zhou,Guanglin Dai,Ting Yuan,Pengbo Wang
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22377
摘要

Abstract With the aging population and increasing labor costs, traditional manual harvesting methods have become less economically efficient. Consequently, research into fully automated harvesting using selective harvesting robots for cherry tomatoes has become a hot topic. However, most of the current research is focused on individual harvesting of large tomatoes, and there is less research on the development of complete systems for harvesting cherry tomatoes in clusters. The purpose of this study is to develop a harvesting robot system capable of picking tomato clusters by cutting their fruit‐bearing pedicels and to evaluate the robot prototype in real greenhouse environments. First, to enhance the grasping stability, a novel end‐effector was designed. This end‐effector utilizes a cam mechanism to achieve asynchronous actions of cutting and grasping with only one power source. Subsequently, a visual perception system was developed to locate the cutting points of the pedicels. This system is divided into two parts: rough positioning of the fruits in the far‐range view and accurate positioning of the cutting points of the pedicels in the close‐range view. Furthermore, it possesses the capability to adaptively infer the approaching pose of the end‐effector based on point cloud features extracted from fruit‐bearing pedicels and stems. Finally, a prototype of the tomato‐harvesting robot was assembled for field trials. The test results demonstrate that in tomato clusters with unobstructed pedicels, the localization success rates for the cutting points were 88.5% and 83.7% in the two greenhouses, respectively, while the harvesting success rates reached 57.7% and 55.4%, respectively. The average cycle time to harvest a tomato cluster was 24 s. The experimental results prove the potential for commercial application of the developed tomato‐harvesting robot and through the analysis of failure cases, discuss directions for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
惠惠发布了新的文献求助10
刚刚
深夜看文献的小刘完成签到,获得积分10
刚刚
菊菊发布了新的文献求助10
刚刚
刚刚
猪猪发布了新的文献求助10
1秒前
胖豆发布了新的文献求助10
1秒前
巴啦啦能量完成签到 ,获得积分10
1秒前
2秒前
完美凝海发布了新的文献求助30
2秒前
科研菜鸟发布了新的文献求助10
2秒前
升学顺利身体健康完成签到,获得积分10
3秒前
3秒前
爱学习发布了新的文献求助10
3秒前
cc发布了新的文献求助10
4秒前
533完成签到,获得积分20
4秒前
科研通AI5应助yx采纳,获得10
4秒前
5秒前
koi发布了新的文献求助10
5秒前
浦肯野应助湖月照我影采纳,获得30
5秒前
5秒前
陈博士完成签到,获得积分10
6秒前
Citrus完成签到,获得积分10
7秒前
费老三发布了新的文献求助30
7秒前
华仔应助chenjyuu采纳,获得10
7秒前
7秒前
最最最发布了新的文献求助10
7秒前
7秒前
Tuesday完成签到 ,获得积分10
8秒前
8秒前
9秒前
阿毛发布了新的文献求助10
10秒前
11秒前
情怀应助灵巧荆采纳,获得10
11秒前
Ll发布了新的文献求助10
11秒前
Peter发布了新的文献求助30
12秒前
12秒前
13秒前
科研韭菜发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762