已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exact and Approximation Algorithms for Sparse Principal Component Analysis

主成分分析 算法 计算机科学 组分(热力学) 稳健主成分分析 数学优化 数学 人工智能 物理 热力学
作者
Yongchun Li,Weijun Xie
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2022.0372
摘要

Sparse principal component analysis (SPCA) is designed to enhance the interpretability of traditional principal component analysis by optimally selecting a subset of features that comprise the first principal component. Given the NP-hard nature of SPCA, most current approaches resort to approximate solutions, typically achieved through tractable semidefinite programs or heuristic methods. To solve SPCA to optimality, we propose two exact mixed-integer semidefinite programs (MISDPs) and an arbitrarily equivalent mixed-integer linear program. The MISDPs allow us to design an effective branch-and-cut algorithm with closed-form cuts that do not need to solve dual problems. For the proposed mixed-integer formulations, we further derive the theoretical optimality gaps of their continuous relaxations. Besides, we apply the greedy and local search algorithms to solving SPCA and derive their first-known approximation ratios. Our numerical experiments reveal that the exact methods we developed can efficiently find optimal solutions for data sets containing hundreds of features. Furthermore, our approximation algorithms demonstrate both scalability and near-optimal performance when benchmarked on larger data sets, specifically those with thousands of features. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: This research was supported in part by the Division of Civil, Mechanical and Manufacturing Innovation [Grant 224614], the Division of Computing and Communication Foundations [Grant 2246417], and the Office of Naval Research [Grant N00014-24-1-2066]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0372 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0372 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助Pandaer采纳,获得10
1秒前
牛马人发布了新的文献求助10
1秒前
星辰坠于海应助GD采纳,获得10
2秒前
喜悦发布了新的文献求助10
2秒前
Ruijun发布了新的文献求助10
3秒前
华西招生版完成签到,获得积分10
4秒前
陈泽中发布了新的文献求助10
7秒前
8秒前
SciGPT应助健忘数据线采纳,获得10
10秒前
彭于晏应助识趣采纳,获得10
11秒前
Yato发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
Pandaer发布了新的文献求助10
13秒前
14秒前
田様应助殷勤的斓采纳,获得10
14秒前
Owen应助吃鲨鱼的小虾米采纳,获得10
16秒前
16秒前
man完成签到,获得积分10
18秒前
111发布了新的文献求助10
18秒前
乐乐应助Ruijun采纳,获得10
19秒前
daisies发布了新的文献求助30
20秒前
无情的盼兰完成签到,获得积分10
20秒前
20秒前
20秒前
man发布了新的文献求助10
21秒前
Lric发布了新的文献求助10
22秒前
22秒前
852应助De_Frank123采纳,获得10
23秒前
长期完成签到,获得积分10
23秒前
杨除夕完成签到,获得积分10
24秒前
Zoeyz完成签到,获得积分10
24秒前
gxun完成签到,获得积分10
24秒前
科研通AI5应助七里香采纳,获得30
25秒前
SciGPT应助lily采纳,获得30
25秒前
26秒前
幸福的kc完成签到,获得积分10
26秒前
大个应助Yato采纳,获得10
27秒前
12完成签到,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526225
求助须知:如何正确求助?哪些是违规求助? 3106584
关于积分的说明 9281078
捐赠科研通 2804174
什么是DOI,文献DOI怎么找? 1539323
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709495