A Semi-Supervised Pyramid Cross-Temporal Attention Transformer for Change Detection in High-Resolution Remote Sensing Images

计算机科学 变更检测 人工智能 计算机视觉 棱锥(几何) 遥感 图像分辨率 变压器 高分辨率 模式识别(心理学) 地质学 工程类 光学 物理 电气工程 电压
作者
Pengyuan Lv,Mengchen Li,Yanfei Zhong
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2024.3404645
摘要

The vision transformer (ViT) model has the advantage of being able to model the long-range dependencies in the imagery and has been studied for the task of remote sensing image change detection (CD). However, the performance of the existing transformer-based CD methods is not satisfactory in the case of limited labeled data. The original self-attention mechanism cannot effectively extract the change information, and the large number of parameters in the ViT model makes the model difficult to train. To solve the above-mentioned problems, a semi-supervised pyramid cross-temporal attention transformer for change detection (CT 2 RCDSS) is proposed in this letter. The CT 2 RCDSS method follows an encoder-decoder structure. The encoder utilizes a dual-branch structure, containing the combination of the proposed cross-temporal attention (PCTA) and pyramid self-attention (PSA) mechanisms, which is designed to consider the interaction of the features from different time phases and enhance the changes at different scales. In the decoder, a series of deconvolutional layers with skip connections are utilized, and a Softmax layer follows to acquire the final binary change map. In addition, a semi-supervised training strategy, which reduces the errors in the pseudo-labels generated from the models initialized with different parameters, is used to improve the model stability while using unlabeled data. The experiments showed that the proposed method can achieve a superior F1-score and intersection over union (IoU), which indicates the potential of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研yu完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
3W完成签到,获得积分10
2秒前
2秒前
小野菌完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
6秒前
Owen应助cyc采纳,获得10
8秒前
Jian发布了新的文献求助10
9秒前
天天快乐应助大力大楚采纳,获得10
10秒前
hanjresearch发布了新的文献求助10
10秒前
whatever发布了新的文献求助30
11秒前
12秒前
CodeCraft应助科研打工人采纳,获得10
13秒前
Orange应助同城代打采纳,获得10
14秒前
14秒前
kalah应助lin采纳,获得30
15秒前
ShuY发布了新的文献求助10
15秒前
16秒前
Atopos文发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
19秒前
spark完成签到,获得积分10
20秒前
chiyudoubao完成签到,获得积分10
20秒前
www发布了新的文献求助10
22秒前
了晨发布了新的文献求助10
22秒前
22秒前
Orange应助结实夜雪采纳,获得10
23秒前
24秒前
柠檬小lin发布了新的文献求助30
24秒前
24秒前
25秒前
25秒前
是木易呀应助Khr1stINK采纳,获得10
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328561
求助须知:如何正确求助?哪些是违规求助? 2958679
关于积分的说明 8591212
捐赠科研通 2636974
什么是DOI,文献DOI怎么找? 1443257
科研通“疑难数据库(出版商)”最低求助积分说明 668631
邀请新用户注册赠送积分活动 655926