HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data

空间分析 计算机科学 聚类分析 分割 空间语境意识 转录组 人工智能 背景(考古学) 模式识别(心理学) 计算生物学 生物 数据挖掘 基因 基因表达 遗传学 遥感 古生物学 地质学
作者
Yuanyuan Ma,Lifang Liu,Yongbiao Zhao,Bo Hang,Yanduo Zhang
出处
期刊:BMC Genomics [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12864-024-10469-x
摘要

Abstract Background Advances of spatial transcriptomics technologies enabled simultaneously profiling gene expression and spatial locations of cells from the same tissue. Computational tools and approaches for integration of transcriptomics data and spatial context information are urgently needed to comprehensively explore the underlying structure patterns. In this manuscript, we propose HyperGCN for the integrative analysis of gene expression and spatial information profiled from the same tissue. HyperGCN enables data visualization and clustering, and facilitates downstream analysis, including domain segmentation, the characterization of marker genes for the specific domain structure and GO enrichment analysis. Results Extensive experiments are implemented on four real datasets from different tissues (including human dorsolateral prefrontal cortex, human positive breast tumors, mouse brain, mouse olfactory bulb tissue and Zabrafish melanoma) and technologies (including 10X visium, osmFISH, seqFISH+, 10X Xenium and Stereo-seq) with different spatial resolutions. The results show that HyperGCN achieves superior clustering performance and produces good domain segmentation effects while identifies biologically meaningful spatial expression patterns. This study provides a flexible framework to analyze spatial transcriptomics data with high geometric complexity. Conclusions HyperGCN is an unsupervised method based on hyper graph induced g raph c onvolutional n etwork, where it assumes that there existed disjoint tissues with high geometric complexity, and models the semantic relationship of cells through hypergraph, which better tackles the high-order interactions of cells and levels of noise in spatial transcriptomics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江雁完成签到,获得积分10
1秒前
满天星辰独览完成签到 ,获得积分10
1秒前
1秒前
bee完成签到 ,获得积分10
1秒前
小宁完成签到,获得积分10
3秒前
hbj完成签到,获得积分10
3秒前
张一完成签到,获得积分10
6秒前
windmill完成签到,获得积分10
6秒前
赘婿应助David采纳,获得10
7秒前
CipherSage应助是我呀吼采纳,获得10
7秒前
倪好完成签到,获得积分10
10秒前
谦让汝燕完成签到,获得积分10
10秒前
12秒前
1234@完成签到 ,获得积分10
13秒前
雨相所至完成签到,获得积分10
13秒前
研友_8oYg4n完成签到,获得积分10
13秒前
和光同尘发布了新的文献求助20
13秒前
迷路凌柏完成签到 ,获得积分10
13秒前
14秒前
冬亦发布了新的文献求助10
15秒前
清脆迎曼应助小喜采纳,获得10
15秒前
机智毛豆完成签到,获得积分10
16秒前
16秒前
jzmulyl完成签到,获得积分10
16秒前
薛乎虚完成签到 ,获得积分10
16秒前
gaogao完成签到,获得积分10
17秒前
糖炒栗子完成签到,获得积分10
18秒前
汉堡包应助马前人采纳,获得10
18秒前
m李完成签到 ,获得积分10
18秒前
吴旭东发布了新的文献求助10
19秒前
19秒前
deluohaida完成签到,获得积分20
21秒前
科研小白完成签到,获得积分10
21秒前
21秒前
kyt完成签到 ,获得积分10
22秒前
cij123完成签到,获得积分10
22秒前
冬亦完成签到,获得积分10
23秒前
石人达完成签到,获得积分10
23秒前
小羊佳佳发布了新的文献求助10
24秒前
David发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570728
求助须知:如何正确求助?哪些是违规求助? 3992198
关于积分的说明 12356899
捐赠科研通 3664905
什么是DOI,文献DOI怎么找? 2019801
邀请新用户注册赠送积分活动 1054208
科研通“疑难数据库(出版商)”最低求助积分说明 941798