HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data

空间分析 计算机科学 聚类分析 分割 空间语境意识 转录组 人工智能 背景(考古学) 模式识别(心理学) 计算生物学 生物 数据挖掘 基因 基因表达 遗传学 遥感 古生物学 地质学
作者
Yuanyuan Ma,Lifang Liu,Yongbiao Zhao,Bo Hang,Yanduo Zhang
出处
期刊:BMC Genomics [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12864-024-10469-x
摘要

Abstract Background Advances of spatial transcriptomics technologies enabled simultaneously profiling gene expression and spatial locations of cells from the same tissue. Computational tools and approaches for integration of transcriptomics data and spatial context information are urgently needed to comprehensively explore the underlying structure patterns. In this manuscript, we propose HyperGCN for the integrative analysis of gene expression and spatial information profiled from the same tissue. HyperGCN enables data visualization and clustering, and facilitates downstream analysis, including domain segmentation, the characterization of marker genes for the specific domain structure and GO enrichment analysis. Results Extensive experiments are implemented on four real datasets from different tissues (including human dorsolateral prefrontal cortex, human positive breast tumors, mouse brain, mouse olfactory bulb tissue and Zabrafish melanoma) and technologies (including 10X visium, osmFISH, seqFISH+, 10X Xenium and Stereo-seq) with different spatial resolutions. The results show that HyperGCN achieves superior clustering performance and produces good domain segmentation effects while identifies biologically meaningful spatial expression patterns. This study provides a flexible framework to analyze spatial transcriptomics data with high geometric complexity. Conclusions HyperGCN is an unsupervised method based on hyper graph induced g raph c onvolutional n etwork, where it assumes that there existed disjoint tissues with high geometric complexity, and models the semantic relationship of cells through hypergraph, which better tackles the high-order interactions of cells and levels of noise in spatial transcriptomics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福明明发布了新的文献求助10
刚刚
莫西发布了新的文献求助10
2秒前
12完成签到,获得积分10
2秒前
annie完成签到,获得积分10
2秒前
2秒前
3秒前
liuxuwei发布了新的文献求助10
4秒前
汉堡包应助呆萌采纳,获得10
4秒前
徐小赞完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助yinhaowu采纳,获得10
6秒前
Lowe发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
JamesPei应助wyy采纳,获得10
7秒前
7秒前
8秒前
9秒前
9秒前
共享精神应助12366666采纳,获得10
9秒前
dingjianqiang发布了新的文献求助10
10秒前
10秒前
可可发布了新的文献求助10
11秒前
chanyi完成签到,获得积分10
11秒前
风中的凝安完成签到,获得积分10
12秒前
李爱国应助smallsix采纳,获得10
13秒前
13333发布了新的文献求助10
13秒前
ll完成签到,获得积分10
14秒前
14秒前
酷波er应助福明明采纳,获得10
14秒前
14秒前
黎总伦完成签到,获得积分20
14秒前
15秒前
threonine发布了新的文献求助10
15秒前
栗子发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352