亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The cytoarchitectonic landscape revealed by deep learning method facilitated precise positioning in mouse neocortex

新皮层 神经科学 视皮层 皮质(解剖学) 生物 筒状皮质 大脑皮层 解剖 感觉系统 人工智能 计算机科学
作者
Zhixiang Liu,Anan Li,Hui Gong,Xiao‐Quan Yang,Qingming Luo,Zhao Feng,Xiangning Li
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (6)
标识
DOI:10.1093/cercor/bhae229
摘要

Abstract Neocortex is a complex structure with different cortical sublayers and regions. However, the precise positioning of cortical regions can be challenging due to the absence of distinct landmarks without special preparation. To address this challenge, we developed a cytoarchitectonic landmark identification pipeline. The fluorescence micro-optical sectioning tomography method was employed to image the whole mouse brain stained by general fluorescent nucleotide dye. A fast 3D convolution network was subsequently utilized to segment neuronal somas in entire neocortex. By approach, the cortical cytoarchitectonic profile and the neuronal morphology were analyzed in 3D, eliminating the influence of section angle. And the distribution maps were generated that visualized the number of neurons across diverse morphological types, revealing the cytoarchitectonic landscape which characterizes the landmarks of cortical regions, especially the typical signal pattern of barrel cortex. Furthermore, the cortical regions of various ages were aligned using the generated cytoarchitectonic landmarks suggesting the structural changes of barrel cortex during the aging process. Moreover, we observed the spatiotemporally gradient distributions of spindly neurons, concentrated in the deep layer of primary visual area, with their proportion decreased over time. These findings could improve structural understanding of neocortex, paving the way for further exploration with this method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYL完成签到,获得积分10
刚刚
9秒前
9秒前
14秒前
陳.发布了新的文献求助10
15秒前
25秒前
量子星尘发布了新的文献求助10
41秒前
上官若男应助大晨采纳,获得10
52秒前
Lucas应助科研通管家采纳,获得10
57秒前
1分钟前
大晨发布了新的文献求助10
1分钟前
lili发布了新的文献求助10
1分钟前
1分钟前
lili完成签到,获得积分20
1分钟前
cc完成签到,获得积分10
1分钟前
2分钟前
海绵宝宝完成签到 ,获得积分10
2分钟前
Jasper应助阳光的星月采纳,获得10
2分钟前
TXZ06完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
打打应助朴素海亦采纳,获得10
3分钟前
方汀应助朴素海亦采纳,获得10
3分钟前
4分钟前
dd完成签到,获得积分10
4分钟前
5分钟前
开朗大雁完成签到 ,获得积分10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
荷兰香猪完成签到,获得积分10
5分钟前
5分钟前
5分钟前
阳光的星月完成签到,获得积分10
5分钟前
研友_8RyzBZ完成签到,获得积分20
5分钟前
5分钟前
5分钟前
huahuaaixuexi完成签到,获得积分10
5分钟前
5分钟前
情怀应助成成鹅了采纳,获得10
5分钟前
苗龙伟完成签到 ,获得积分10
5分钟前
dd发布了新的文献求助200
6分钟前
852应助成成鹅了采纳,获得30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107