Stochastic Class‐Attention Net to Detect the Breast Carcinoma Subtypes With Test Time Augmentation

班级(哲学) 网(多面体) 计算机科学 考试(生物学) 乳腺癌 肿瘤科 人工智能 医学 乳腺癌 数学 内科学 生物 癌症 几何学 古生物学
作者
Vivek Harshey,Amar Partap Singh Pharwaha
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (4)
标识
DOI:10.1002/ima.23124
摘要

ABSTRACT Despite advances in medical sciences, breast cancer remains a deadly disease globally, primarily affecting women. Fortunately, studies claim that breast cancer is treatable if diagnosed early. Late diagnoses have poor prognoses and can affect the patient's quality of life. Therefore, a significant research body is dedicated to establishing and identifying the disease at an initial stage. Deep learning (DL) techniques are garnering attention for aiding medical professionals in detecting this disease using histopathology (HP) image modality. The heterogeneous nature of this disease subtypes results in the imbalances of benign and malignant subtypes. From a DL point of view, this becomes an imbalanced problem deserving special care. Unfortunately, current DL‐based techniques do not fully address this issue and suffer from poor metrics and robustness. In this work, we present a DL‐based breast cancer automatic detection system (BCADS) using a novel architecture stochastic class‐attention net (SCAN). This technique performed better when combined with label smoothing and test time augmentation. This work outperforms the previously reported results for binary and multiclass on the BreaKHis dataset. Also, we validated our method on separate BACH and BCNB datasets to prove its effectiveness and clinical relevancy. We hope that the designed BCADS will help the treating doctor and pathologist in a meaningful way and thus help to reduce the impact of this deadly disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助贺无剑采纳,获得10
3秒前
Francis完成签到,获得积分10
4秒前
7秒前
诚心的碧空完成签到,获得积分10
8秒前
9秒前
无花果应助yhbq采纳,获得10
10秒前
CodeCraft应助rachel采纳,获得10
10秒前
Sunny发布了新的文献求助10
11秒前
大模型应助夜白采纳,获得10
12秒前
戴维完成签到,获得积分20
13秒前
一一发布了新的文献求助10
14秒前
victory_liu发布了新的文献求助10
17秒前
21秒前
xzy998发布了新的文献求助10
22秒前
充电宝应助月兮2013采纳,获得10
24秒前
baihy发布了新的文献求助10
25秒前
踏实志泽发布了新的文献求助10
26秒前
酷波er应助精明的天抒采纳,获得10
27秒前
28秒前
小蘑菇应助Dylan采纳,获得10
29秒前
贺无剑发布了新的文献求助10
32秒前
34秒前
35秒前
EASY完成签到,获得积分10
38秒前
38秒前
yhbq发布了新的文献求助10
38秒前
萧水白应助空洛采纳,获得10
39秒前
40秒前
biubiubiu发布了新的文献求助20
40秒前
慕青应助baihy采纳,获得10
41秒前
44秒前
45秒前
48秒前
JamesPei应助Sunny采纳,获得10
49秒前
贺无剑完成签到,获得积分10
49秒前
49秒前
丘比特应助精明的天抒采纳,获得10
50秒前
爱学习完成签到,获得积分20
50秒前
51秒前
nmamtf发布了新的文献求助10
51秒前
高分求助中
Comprehensive natural products III : chemistry and biology 3000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346458
求助须知:如何正确求助?哪些是违规求助? 2973193
关于积分的说明 8658263
捐赠科研通 2653611
什么是DOI,文献DOI怎么找? 1453276
科研通“疑难数据库(出版商)”最低求助积分说明 672801
邀请新用户注册赠送积分活动 662691