作者
Felix Strieth‐Kalthoff,Han Hao,Vandana Rathore,Joshua S. Derasp,Théophile Gaudin,Nicholas H. Angello,Martin Seifrid,Ekaterina Trushina,Mason Guy,Junliang Liu,Xun Tang,Masashi Mamada,Wesley Wang,Tuul Tsagaantsooj,Cyrille Lavigne,Robert Pollice,Tony Wu,Kazuhiro Hotta,L Bodø,Shangyu Li,Mohammad Haddadnia,Agnieszka Wołos,Rafał Roszak,Cher-Tian Ser,Carlota Bozal‐Ginesta,Riley J. Hickman,Jenya Vestfrid,Andrés Aguilar-Gránda,Elena L. Klimareva,Ralph C. Sigerson,Wenduan Hou,Daniel Gahler,Sławomir Lach,Adrian Warzybok,Oleg Borodin,Simon Rohrbach,Benjamín Sánchez-Lengeling,Chihaya Adachi,Bartosz A. Grzybowski,Leroy Cronin,Jason E. Hein,Martin D. Burke,Alán Aspuru‐Guzik
摘要
Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.