Regulating Interfacial Compositions to Build a Stable Superlattice Structure of Layered Oxide Cathode Materials for Sodium-Ion Batteries

超晶格 阴极 材料科学 氧化物 离子 氧化钠 纳米技术 化学工程 光电子学 化学 冶金 工程类 物理化学 有机化学
作者
De Fang,Jianling Li
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:7 (10): 4639-4649 被引量:8
标识
DOI:10.1021/acsaem.4c00949
摘要

The introduction of a superlattice structure in layered oxides for sodium-ion batteries (SIBs) is an effective strategy for improving structural stability. However, carbonate impurities adhering to the surface of layered oxides increase the side reactions and block the Na+ transport channels. The deteriorating interfacial environment leads to the gradual disappearance of the superlattice structure during cycling, which affects the structural stability of SIBs. Herein, a stable superlattice structure is successfully achieved by reasonable interfacial regulation to remove carbonate impurities adhering to the surface of P2–Na0.80Li0.13Ni0.20Mn0.67O2. The residual impurities, such as Na2CO3 and NaHCO3, on the surface of the layered oxides react with Si4+ to generate about 5 nm of a Na2SiO3 coating layer, which can improve the air stability of the cathode materials. Meanwhile, the introduction of Si into the bulk phase significantly enhances the length of the c-axis, resulting in faster Na+ diffusion kinetics. The cyclic voltammetry (CV) and ex situ X-ray photoelectron spectroscopy (XPS) results show that the reversible redox of the lattice oxygen is activated by interfacial regulation. Thus, LNM-2% NSO exhibits a high reversible specific capacity (170.95 mA·h·g–1 at 0.05C), good capacity retention (88.6% after 100 cycles at 0.5C), and excellent rate performance (96.12 mA·h·g–1 at 5C) in a wide voltage range of 1.5–4.5 V. This study confirms the feasibility of regulating the interfacial composition to achieve a stable superlattice structure, which has implications for the design of cathode materials with excellent air stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻诗兰完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
stellc完成签到,获得积分10
1秒前
1秒前
祝你开心发布了新的文献求助10
2秒前
追寻宛海完成签到,获得积分10
3秒前
KKK发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
迷人静白完成签到,获得积分10
5秒前
5秒前
6秒前
wangye发布了新的文献求助10
6秒前
wanci应助zyyyyyyyy采纳,获得10
6秒前
6秒前
追寻宛海发布了新的文献求助15
7秒前
7秒前
复杂惜霜发布了新的文献求助10
7秒前
Jasper应助激昂的逊采纳,获得10
7秒前
黎先生发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
wanci应助务实的西牛采纳,获得10
9秒前
彭于晏应助ww采纳,获得10
9秒前
浮游应助勇yi采纳,获得10
9秒前
9秒前
怀玉发布了新的文献求助10
11秒前
科研通AI6应助SONG采纳,获得10
11秒前
科研通AI6应助是why耶采纳,获得10
11秒前
11秒前
eijgnij发布了新的文献求助10
12秒前
12秒前
思源应助光亮的友容采纳,获得10
12秒前
xingzi123完成签到 ,获得积分10
13秒前
ww完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901