BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments

计算机科学 摄动(天文学) 人工智能 物理 量子力学
作者
Yusuf Roohani,Jian Vora,Qian Huang,Zachary Steinhart,Alexander Marson,Percy Liang,Jure Leskovec
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2405.17631
摘要

Agents based on large language models have shown great potential in accelerating scientific discovery by leveraging their rich background knowledge and reasoning capabilities. Here, we develop BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions. We demonstrate our agent on the problem of designing genetic perturbation experiments, where the aim is to find a small subset out of many possible genes that, when perturbed, result in a specific phenotype (e.g., cell growth). Utilizing its biological knowledge, BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model or explicitly design an acquisition function. Moreover, BioDiscoveryAgent achieves an average of 18% improvement in detecting desired phenotypes across five datasets, compared to existing Bayesian optimization baselines specifically trained for this task. Our evaluation includes one dataset that is unpublished, ensuring it is not part of the language model's training data. Additionally, BioDiscoveryAgent predicts gene combinations to perturb twice as accurately as a random baseline, a task so far not explored in the context of closed-loop experiment design. The agent also has access to tools for searching the biomedical literature, executing code to analyze biological datasets, and prompting another agent to critically evaluate its predictions. Overall, BioDiscoveryAgent is interpretable at every stage, representing an accessible new paradigm in the computational design of biological experiments with the potential to augment scientists' capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Riki完成签到,获得积分10
刚刚
虚幻白玉发布了新的文献求助10
刚刚
德行天下完成签到,获得积分10
刚刚
Jenny应助lan采纳,获得10
1秒前
fztnh完成签到,获得积分10
1秒前
上官若男应助lyz666采纳,获得10
1秒前
顾念完成签到 ,获得积分10
1秒前
277发布了新的文献求助10
2秒前
小二郎应助GCD采纳,获得10
3秒前
hhhhhh完成签到 ,获得积分10
3秒前
甜味拾荒者完成签到,获得积分10
5秒前
小二郎应助BONBON采纳,获得10
5秒前
6秒前
charllie完成签到 ,获得积分10
6秒前
空禅yew完成签到,获得积分10
7秒前
坚强亦丝应助跳跃采纳,获得10
9秒前
英俊的铭应助cc采纳,获得10
9秒前
huangsan完成签到,获得积分10
9秒前
匹诺曹完成签到,获得积分10
9秒前
10秒前
华仔应助进取拼搏采纳,获得10
10秒前
11秒前
dingdong发布了新的文献求助10
11秒前
you完成签到 ,获得积分10
12秒前
qwf完成签到 ,获得积分10
12秒前
13秒前
万能图书馆应助一一采纳,获得10
13秒前
执着跳跳糖完成签到 ,获得积分10
14秒前
阳yang完成签到,获得积分10
14秒前
牛头人完成签到,获得积分10
14秒前
15秒前
Rrr发布了新的文献求助10
15秒前
16秒前
16秒前
serenity完成签到 ,获得积分10
16秒前
Benliu完成签到,获得积分10
16秒前
csq发布了新的文献求助10
17秒前
18秒前
Hello应助外向的醉易采纳,获得10
18秒前
DWWWDAADAD完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808