Evaluating the relationship between walking and street characteristics based on big data and machine learning analysis

大数据 数据科学 计算机科学 人工智能 机器学习 心理学 数据挖掘
作者
Avital Angel,Achituv Cohen,Trisalyn Nelson,Pnina Plaut
出处
期刊:Cities [Elsevier]
卷期号:151: 105111-105111 被引量:3
标识
DOI:10.1016/j.cities.2024.105111
摘要

The relationship between walking and the built environment is gaining increased attention for promoting sustainable transport and healthy communities. However, while pedestrians engage with the street environment, walkability assessments often overlook human-scale characteristics, focusing mainly on the neighborhood-level. Furthermore, traditional studies on walkability rely on limited and time-bound methods. To address these research gaps and obtain insights into the connection between walking and the built environment, this study utilizes machine learning techniques to scrutinize mobile-app data on pedestrian traffic alongside street characteristics. Tree-based algorithms are deployed to identify the association between walking volume and built environment features at the street-level, spanning distinct time periods. The pedestrian traffic data was gathered in Tel Aviv, Israel, while accounting for seasonal variations, weekdays, and time of day. Examining 20 street-level characteristics across 8000 segments furnishes new insights into the relative significance of various characteristics for walking, as well as street profiles linked to greater vs. lesser pedestrian activity. Notably, time variables emerge as crucial, with street features varying in importance across different time definitions. The study offers implications for decision-makers and urban planners by informing them of pedestrians' behaviors and preferences at the street-level, facilitating more efficient infrastructure investments and supporting planning decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐仔发布了新的文献求助30
2秒前
风不尽,树不静完成签到 ,获得积分10
4秒前
young完成签到 ,获得积分10
10秒前
jyy应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得30
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
joeqin完成签到,获得积分10
21秒前
小贾爱喝冰美式完成签到 ,获得积分10
23秒前
Artin完成签到,获得积分10
24秒前
zhang完成签到,获得积分10
25秒前
烂漫的蜡烛完成签到 ,获得积分10
26秒前
HHW完成签到 ,获得积分10
30秒前
YKJ完成签到 ,获得积分10
32秒前
灿华完成签到 ,获得积分10
32秒前
qiaobaqiao完成签到 ,获得积分10
45秒前
洁净的盼易完成签到 ,获得积分10
46秒前
tengfei完成签到 ,获得积分10
53秒前
魔幻的慕梅完成签到 ,获得积分10
54秒前
清风完成签到 ,获得积分10
1分钟前
wanci应助乐仔采纳,获得10
1分钟前
1分钟前
monster完成签到 ,获得积分10
1分钟前
安然完成签到 ,获得积分10
1分钟前
btcat完成签到,获得积分10
1分钟前
cadcae完成签到,获得积分10
1分钟前
Allot完成签到,获得积分10
1分钟前
1分钟前
乐仔发布了新的文献求助10
1分钟前
wp4455777完成签到,获得积分10
1分钟前
居里姐姐完成签到 ,获得积分10
1分钟前
空洛完成签到 ,获得积分10
1分钟前
gyx完成签到 ,获得积分10
1分钟前
研友_8K2QJZ完成签到,获得积分10
1分钟前
qq完成签到 ,获得积分10
2分钟前
2分钟前
LHT完成签到,获得积分10
2分钟前
科研通AI2S应助LHT采纳,获得10
2分钟前
dent强完成签到 ,获得积分10
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477524
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110293
捐赠科研通 2760474
什么是DOI,文献DOI怎么找? 1514940
邀请新用户注册赠送积分活动 700486
科研通“疑难数据库(出版商)”最低求助积分说明 699617