Species classification and origin identification of Lonicerae japonicae flos and Lonicerae flos using hyperspectral imaging with support vector machine

弗洛斯 高光谱成像 支持向量机 模式识别(心理学) 鉴定(生物学) 人工智能 物种鉴定 传统医学 植物 化学 生物 计算机科学 医学 动物 生物化学 芦丁 抗氧化剂
作者
Jun Wang,Zeyi Cai,Jin Chen,Dongdong Peng,Yuanning Zhai,Hengnian Qi,Ruibin Bai,Xue Guo,Jian Yang,Chu Zhang
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:132: 106356-106356 被引量:5
标识
DOI:10.1016/j.jfca.2024.106356
摘要

Lonicerae japonicae flos (Jinyinhua, JYH) and Lonicerae flos (Shanyinhua, SYH) have high medical and economical value. Due to their similar appearance, the more expensive JYH is often adulterated with the cheaper SYH for economic gain. In this study, near-infrared hyperspectral imaging (HSI) was used to identify the geographical origins of JYH and SYH and differentiate JYH from SYH. Support vector classification (SVC) models using linear kernel function were established to achieve the research goals. For the identification of geographical origin, we explored the impact of different sample batches on classification performance. The overall classification accuracy of JYH and SYH was in the range of 60.10-85.59% and 63.35-91.67%, respectively. For species classification, the impact of sample geographical origins and sample batches on model performances was explored. The overall classification accuracy for distinguishing JYH and SYH was 98.46-100%. These results demonstrated the significant impact of sample sources on the performance of the models. Using SVC models, the important wavelengths contributing more to the classification were identified by recursive feature elimination (RFE). The results showed that HSI holds great potential for the identification of JYH and SYH, as well as their geographical origins. This technique can provide crucial technical support for the development and standardization of the Traditional Chinese Medicine industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tp040900发布了新的文献求助10
刚刚
刚刚
搜集达人应助Welcome采纳,获得10
1秒前
952752907!!!!123完成签到,获得积分20
1秒前
彭于晏应助朴素的天蓉采纳,获得10
1秒前
梁其杰完成签到,获得积分10
1秒前
ShengjuChen完成签到 ,获得积分10
2秒前
kevinjy完成签到,获得积分10
2秒前
2秒前
3秒前
wyw123完成签到,获得积分10
3秒前
kx完成签到,获得积分10
3秒前
zhangmbit完成签到,获得积分10
3秒前
3秒前
西格玛完成签到,获得积分10
4秒前
科目三应助彩色的尔白采纳,获得10
5秒前
顶刊在逃一作完成签到,获得积分10
5秒前
汉堡包应助YQ采纳,获得10
6秒前
6秒前
景宛白完成签到,获得积分10
7秒前
阿萨德发布了新的文献求助10
7秒前
hml发布了新的文献求助10
7秒前
韩小寒qqq完成签到,获得积分10
8秒前
柠檬完成签到 ,获得积分10
8秒前
8秒前
Peter发布了新的文献求助10
8秒前
年少丶完成签到,获得积分10
9秒前
李爱国应助力量采纳,获得10
10秒前
mr.pork发布了新的文献求助10
10秒前
慕青应助XNM采纳,获得10
10秒前
安全平静完成签到,获得积分10
11秒前
惊蛰时分听春雷完成签到,获得积分10
12秒前
柠檬百香果完成签到,获得积分10
12秒前
12秒前
Welcome发布了新的文献求助10
12秒前
zxh发布了新的文献求助10
13秒前
13秒前
好好学习完成签到,获得积分10
13秒前
Peter完成签到,获得积分20
14秒前
热情奇异果完成签到,获得积分20
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259