Species classification and origin identification of Lonicerae japonicae flos and Lonicerae flos using hyperspectral imaging with support vector machine

弗洛斯 高光谱成像 支持向量机 模式识别(心理学) 鉴定(生物学) 人工智能 物种鉴定 传统医学 植物 化学 生物 计算机科学 医学 动物 生物化学 芦丁 抗氧化剂
作者
Jun Wang,Zeyi Cai,Jin Chen,Dongdong Peng,Yuanning Zhai,Hengnian Qi,Ruibin Bai,Xue Guo,Jian Yang,Chu Zhang
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:132: 106356-106356 被引量:5
标识
DOI:10.1016/j.jfca.2024.106356
摘要

Lonicerae japonicae flos (Jinyinhua, JYH) and Lonicerae flos (Shanyinhua, SYH) have high medical and economical value. Due to their similar appearance, the more expensive JYH is often adulterated with the cheaper SYH for economic gain. In this study, near-infrared hyperspectral imaging (HSI) was used to identify the geographical origins of JYH and SYH and differentiate JYH from SYH. Support vector classification (SVC) models using linear kernel function were established to achieve the research goals. For the identification of geographical origin, we explored the impact of different sample batches on classification performance. The overall classification accuracy of JYH and SYH was in the range of 60.10-85.59% and 63.35-91.67%, respectively. For species classification, the impact of sample geographical origins and sample batches on model performances was explored. The overall classification accuracy for distinguishing JYH and SYH was 98.46-100%. These results demonstrated the significant impact of sample sources on the performance of the models. Using SVC models, the important wavelengths contributing more to the classification were identified by recursive feature elimination (RFE). The results showed that HSI holds great potential for the identification of JYH and SYH, as well as their geographical origins. This technique can provide crucial technical support for the development and standardization of the Traditional Chinese Medicine industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
受伤问凝完成签到 ,获得积分10
3秒前
梨花酒完成签到,获得积分10
5秒前
郭嘉彬发布了新的文献求助10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
uraylong发布了新的文献求助10
8秒前
9秒前
斯文败类应助DamienC采纳,获得10
10秒前
11秒前
松松松发布了新的文献求助50
12秒前
peaunt发布了新的文献求助10
12秒前
冷酷听枫关注了科研通微信公众号
13秒前
14秒前
15秒前
谢謝完成签到,获得积分10
15秒前
dian完成签到 ,获得积分10
16秒前
松松松完成签到,获得积分10
19秒前
明朗完成签到 ,获得积分10
19秒前
复杂帽子发布了新的文献求助10
19秒前
19秒前
聪明初彤完成签到,获得积分10
22秒前
22秒前
23秒前
xiaoming完成签到,获得积分10
25秒前
26秒前
小小心愿完成签到,获得积分20
27秒前
28秒前
磨人的老妖精完成签到,获得积分10
28秒前
28秒前
28秒前
Cx完成签到,获得积分10
28秒前
31秒前
沉静的红酒完成签到,获得积分10
32秒前
汉堡包应助冷酷听枫采纳,获得10
32秒前
35秒前
量子星尘发布了新的文献求助10
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425244
求助须知:如何正确求助?哪些是违规求助? 4539333
关于积分的说明 14166974
捐赠科研通 4456649
什么是DOI,文献DOI怎么找? 2444274
邀请新用户注册赠送积分活动 1435255
关于科研通互助平台的介绍 1412637