弗洛斯
高光谱成像
支持向量机
模式识别(心理学)
鉴定(生物学)
人工智能
物种鉴定
传统医学
植物
化学
生物
计算机科学
医学
动物
生物化学
芦丁
抗氧化剂
作者
Jun Wang,Zeyi Cai,Jin Chen,Dongdong Peng,Yuanning Zhai,Hengnian Qi,Ruibin Bai,Xue Guo,Jian Yang,Chu Zhang
标识
DOI:10.1016/j.jfca.2024.106356
摘要
Lonicerae japonicae flos (Jinyinhua, JYH) and Lonicerae flos (Shanyinhua, SYH) have high medical and economical value. Due to their similar appearance, the more expensive JYH is often adulterated with the cheaper SYH for economic gain. In this study, near-infrared hyperspectral imaging (HSI) was used to identify the geographical origins of JYH and SYH and differentiate JYH from SYH. Support vector classification (SVC) models using linear kernel function were established to achieve the research goals. For the identification of geographical origin, we explored the impact of different sample batches on classification performance. The overall classification accuracy of JYH and SYH was in the range of 60.10-85.59% and 63.35-91.67%, respectively. For species classification, the impact of sample geographical origins and sample batches on model performances was explored. The overall classification accuracy for distinguishing JYH and SYH was 98.46-100%. These results demonstrated the significant impact of sample sources on the performance of the models. Using SVC models, the important wavelengths contributing more to the classification were identified by recursive feature elimination (RFE). The results showed that HSI holds great potential for the identification of JYH and SYH, as well as their geographical origins. This technique can provide crucial technical support for the development and standardization of the Traditional Chinese Medicine industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI