Species classification and origin identification of Lonicerae japonicae flos and Lonicerae flos using hyperspectral imaging with support vector machine

弗洛斯 高光谱成像 支持向量机 模式识别(心理学) 鉴定(生物学) 人工智能 物种鉴定 传统医学 植物 化学 生物 计算机科学 医学 动物 生物化学 芦丁 抗氧化剂
作者
Jun Wang,Zeyi Cai,Jin Chen,Dongdong Peng,Yuanning Zhai,Hengnian Qi,Ruibin Bai,Xue Guo,Jian Yang,Chu Zhang
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:132: 106356-106356 被引量:2
标识
DOI:10.1016/j.jfca.2024.106356
摘要

Lonicerae japonicae flos (Jinyinhua, JYH) and Lonicerae flos (Shanyinhua, SYH) have high medical and economical value. Due to their similar appearance, the more expensive JYH is often adulterated with the cheaper SYH for economic gain. In this study, near-infrared hyperspectral imaging (HSI) was used to identify the geographical origins of JYH and SYH and differentiate JYH from SYH. Support vector classification (SVC) models using linear kernel function were established to achieve the research goals. For the identification of geographical origin, we explored the impact of different sample batches on classification performance. The overall classification accuracy of JYH and SYH was in the range of 60.10-85.59% and 63.35-91.67%, respectively. For species classification, the impact of sample geographical origins and sample batches on model performances was explored. The overall classification accuracy for distinguishing JYH and SYH was 98.46-100%. These results demonstrated the significant impact of sample sources on the performance of the models. Using SVC models, the important wavelengths contributing more to the classification were identified by recursive feature elimination (RFE). The results showed that HSI holds great potential for the identification of JYH and SYH, as well as their geographical origins. This technique can provide crucial technical support for the development and standardization of the Traditional Chinese Medicine industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向上发布了新的文献求助10
刚刚
刚刚
烟花应助倩倩采纳,获得10
2秒前
2秒前
xin发布了新的文献求助10
2秒前
zwj完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
chenfeng2163发布了新的文献求助10
4秒前
冷兮完成签到 ,获得积分10
5秒前
哈哈哈发布了新的文献求助10
6秒前
kkk发布了新的文献求助10
7秒前
寻舟者发布了新的文献求助10
8秒前
天马行空完成签到,获得积分20
8秒前
WangSir发布了新的文献求助10
9秒前
小二郎应助向上采纳,获得10
12秒前
chenfeng2163完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
ty完成签到,获得积分10
15秒前
顾矜应助寻舟者采纳,获得10
15秒前
Hello应助poplyx采纳,获得10
16秒前
aoww发布了新的文献求助10
17秒前
自信鞯发布了新的文献求助10
17秒前
syyyao发布了新的文献求助30
19秒前
24秒前
WangSir完成签到,获得积分10
24秒前
26秒前
syyyao完成签到,获得积分20
27秒前
莫西莫西发布了新的文献求助10
27秒前
27秒前
小马甲应助生尽证提采纳,获得10
27秒前
乐乐应助无名花生采纳,获得20
31秒前
xxxxxxxx完成签到 ,获得积分10
31秒前
向上发布了新的文献求助10
32秒前
Niuma发布了新的文献求助10
33秒前
33秒前
34秒前
高分求助中
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213798
求助须知:如何正确求助?哪些是违规求助? 2862457
关于积分的说明 8133512
捐赠科研通 2528455
什么是DOI,文献DOI怎么找? 1362717
科研通“疑难数据库(出版商)”最低求助积分说明 643694
邀请新用户注册赠送积分活动 616041