亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An interpretable ensemble machine learning workflow for permeability predictions in tight sandstone reservoirs using logging data

工作流程 登录中 集成学习 致密气 地质学 磁导率 计算机科学 随机森林 石油工程 储层建模 人工智能 机器学习 水力压裂 数据库 生态学 遗传学 生物
作者
Ping Feng,Ruijia Wang,Jianmeng Sun,Weichao Yan,Peng Chi,Xin Luo
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (5): MR265-MR280
标识
DOI:10.1190/geo2023-0657.1
摘要

Tight sandstone reservoirs exhibit strong vertical heterogeneity and complex pore structures, challenging conventional permeability evaluation methods based on well-logging data. Although rising machine-learning (ML) techniques have demonstrated excellent accuracy for industrial applications, the physics and rationality within such a powerful “black box” remain less clear. Hence, reliable permeability prediction would benefit from an interpretable ML-based workflow that could reveal the controlling factors. To compare the models and examine the underlying features, 16 different ML submodels are tested after data preprocessing, feature selection, and hyperparameter optimization. By comparing the fitting accuracy and tuning time, the light gradient boosting machine optimized by the whale optimization algorithm, referred to as LGB-WOA, is determined to be the optimal model with the best fitting accuracy and relatively short tuning time. A field data application demonstrates that even in highly heterogeneous reservoir sections, the LGB-WOA model outperformed conventional petrophysical models by being the most consistent with reservoir permeability directly measured from the core samples ([Formula: see text]). The Shapley additive explanation values are then used to interpret the predictions of our LGB-WOA model. As expected, the porosity curve exhibits the highest feature importance among all input features, significantly contributing to permeability predictions. Conversely, a wellbore diameter and compensated neutron log contribute the least and need not be used for subsequent model improvements. These experiments and workflow provide a powerful method for accurately assessing the permeability in complex reservoirs and contribute to a broader understanding of the application of ML in reservoir characterization, paving the way for establishing more interpretable and reliable prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
人间冒险完成签到,获得积分10
9秒前
流星完成签到,获得积分10
10秒前
占稚晴完成签到 ,获得积分10
22秒前
田様应助活泼甜瓜采纳,获得10
22秒前
22秒前
25秒前
26秒前
kk发布了新的文献求助10
26秒前
望远Arena发布了新的文献求助10
30秒前
活泼甜瓜完成签到,获得积分10
33秒前
36秒前
zhaozhiyu完成签到,获得积分10
38秒前
斯文败类应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
Orange应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得30
46秒前
47秒前
50秒前
贪玩的电脑完成签到,获得积分10
50秒前
嘻哈hang应助橘子采纳,获得10
57秒前
执着的怜珊完成签到,获得积分10
1分钟前
SYLH应助丰富寒风采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
连烙发布了新的文献求助10
1分钟前
Legend_完成签到 ,获得积分10
1分钟前
毛豆应助nhjiebio采纳,获得10
1分钟前
小麻哥完成签到,获得积分10
1分钟前
ZXneuro完成签到,获得积分10
1分钟前
1分钟前
连烙完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
ShengQ完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455618
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022880
捐赠科研通 2739402
什么是DOI,文献DOI怎么找? 1502747
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387