材料科学
薄膜
亚胺
X射线光电子能谱
带隙
聚合物
化学工程
纳米技术
光电子学
有机化学
复合材料
化学
工程类
催化作用
作者
Diksha Srivastava,Vijaya Nath Mishra,Showkat H. Mir,Jyotirban Dey,Jayant K. Singh,Manabendra Chandra,Thiruvancheril G. Gopakumar
标识
DOI:10.1021/acsami.4c01698
摘要
Two dimensional (2D) imine-based covalent organic framework (COF), 2D-COF, is a newly emerging molecular 2D polymer with potential applications in thin film electronics, sensing, and catalysis. It is considered an ideal candidate due to its robust 2D nature and precise tunability of the electronic and functional properties. Herein, we report a scalable facile synthesis of 2D imine-COF with control over film thickness (ranging from 100 nm to a few monolayers) and film dimension reaching up to 2 cm on a dielectric (glass) substrate. Highly crystalline 2D imine polymer films are formed by maintaining a quasi-equilibrium (very slow, ∼15 h) in Schiff base condensation reaction between p-phenylenediamine (PDA) and benzene-1,3,5-tricarboxaldehyde (TCA) molecules. Free-standing thin and ultrathin films of imine-COF are obtained using sonication exfoliation of 2D-COF polymer. Insights into the microstructure of thin/ultrathin imine-COF are obtained using scanning and transmission electron microscopy (SEM and TEM) and atomic force microscopy (AFM), which shows high crystallinity and 2D layered structure in both thin and ultrathin films. The chemical nature of the 2D polymer was established using X-ray photoelectron spectroscopy (XPS). Optical band gap measurements also reveal a semiconducting gap. This is further established by electronic structure calculation using density functional theory (DFT), which reveals a semiconductor-like band structure with strong dispersion in bands near conduction and valence band edges. The structural characteristics (layered morphology and microscopic structure) of 2D imine-COF show significant potential for its application in thin film device fabrication. In addition, the electronic structure shows strong dispersion in the frontier bands, making it a potential semiconducting material for charge carrier transportation in electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI