A Hybrid Spectral Attention-Enabled Multi-Scale Spatial-Spectral Learning Network for Hyperspectral Image Super Resolution

高光谱成像 图像分辨率 计算机科学 遥感 比例(比率) 人工智能 全光谱成像 分辨率(逻辑) 光谱分辨率 地质学 谱线 物理 地理 地图学 天文
作者
Wenjing Wang,Tingkui Mu,Qiuxia Li,Haoyang Li,Qiujie Yang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/jstars.2024.3407953
摘要

Hyperspectral image super resolution (HSI-SR) has become an essential step of data preprocessing for tasks such as classification and change detection in remote sensing. For HSI-SR tasks, the state-of-the-art methods lie in how to learn effective spatial and spectral characteristics. More deeply mining the shallow and deep spatial-spectral features is vital for the performance improvement of HSI-SR. Hereby, we provide an end-to-end multi-scale spatial-spectral network (M3SN) driven by a hybrid spectral attention mechanism for HSI-SR, aiming to fully dig shallow and deep spatial-spectral characteristics. Precisely, considering the importance of shallow spatial-spectral features at early stages, a multi-scale information block (MSIB) consisting of a 3D convolution, three parallel 2D convolutions with different scale sizes, and SE-Net is first designed to extract informative multi-scale shallow spatial-spectral features and recalibrate the channel weights of features. Then a dual-path multi-scale spatial-spectral feature block (DMFB) is set up to explore the deep spatial and spatial-spectral features. While one path using 2D convolutions extracts spatial features, the other path employing 3D-Res2Net as well as an updated hybrid spectral attention mechanism (HSAM) module mines multi-scale deep spatial-spectral features. Finally, we design a multi-scale fusion block (MSFB) based on the channel reduction-scaling operation to fuse the extracted hierarchical feature maps for the final reconstruction. It is demonstrated that M3SN outperforms existing methods by extensive experiments on four publicly available hyperspectral datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
orange发布了新的文献求助10
3秒前
李联洪发布了新的文献求助10
3秒前
4秒前
zj发布了新的文献求助10
5秒前
orange完成签到,获得积分10
7秒前
snowman完成签到 ,获得积分10
9秒前
10秒前
zxm完成签到,获得积分10
10秒前
11秒前
ni完成签到 ,获得积分10
11秒前
张nmky发布了新的文献求助30
12秒前
Orange应助陈娜娜采纳,获得10
13秒前
琳666完成签到,获得积分10
13秒前
小马甲应助紫色奶萨采纳,获得10
14秒前
Jared应助LuckyM采纳,获得10
14秒前
niNe3YUE应助霸气剑通采纳,获得10
14秒前
15秒前
15秒前
15秒前
斯文败类应助积极的夏天采纳,获得10
17秒前
浮游应助小山峰2290采纳,获得10
17秒前
18秒前
SJJ应助研友_ngX12Z采纳,获得10
19秒前
aurora发布了新的文献求助10
20秒前
王先生完成签到 ,获得积分10
20秒前
Hrx发布了新的文献求助50
21秒前
22秒前
23秒前
小宝贝啥也不懂完成签到,获得积分10
23秒前
合成研究菜鸟完成签到,获得积分10
25秒前
25秒前
嘿嘿发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
大个应助444采纳,获得30
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557364
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668208
捐赠科研通 4583880
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459413