已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TLTNet: A novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation

级联 变压器 视网膜 分割 计算机科学 人工智能 计算机网络 模式识别(心理学) 医学 眼科 电气工程 化学 工程类 电压 色谱法
作者
Chengwei Wu,Min Guo,Miao Ma,Kaiguang Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108773-108773
标识
DOI:10.1016/j.compbiomed.2024.108773
摘要

Extracting global and local feature information is still challenging due to the problems of retinal blood vessel medical images like fuzzy edge features, noise, difficulty in distinguishing between lesion regions and background information, and loss of low-level feature information, which leads to insufficient extraction of feature information. To better solve these problems and fully extract the global and local feature information of the image, we propose a novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation, which consists of an encoder and a decoder and is connected between the encoder and decoder by a transscale transformer cascade module. Among them, the encoder consists of a local-global transscale transformer module, a multi-head layered transscale adaptive embedding module, and a local context(LCNet) module. The transscale transformer cascade module learns local and global feature information from the first three layers of the encoder, and multi-scale dependent features, fuses the hierarchical feature information from the skip connection block and the channel-token interaction fusion block, respectively, and inputs it to the decoder. The decoder includes a decoding module for the local context network and a transscale position transformer module to input the local and global feature information extracted from the encoder with retained key position information into the decoding module and the position embedding transformer module for recovery and output of the prediction results that are consistent with the input feature information. In addition, we propose an improved cross-entropy loss function based on the difference between the deterministic observation samples and the prediction results with the deviation distance, which is validated on the DRIVE and STARE datasets combined with the proposed network model based on the dual transformer structure in this paper, and the segmentation accuracies are 97.26% and 97.87%, respectively. Compared with other state-of-the-art networks, the results show that the proposed network model has a significant competitive advantage in improving the segmentation performance of retinal blood vessel images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
hai发布了新的文献求助10
4秒前
英姑应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
王王应助科研通管家采纳,获得20
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
内向的飞松完成签到 ,获得积分10
8秒前
要减肥发布了新的文献求助10
8秒前
hai完成签到,获得积分10
9秒前
15秒前
Rencc发布了新的文献求助10
17秒前
lynn_zhang完成签到,获得积分10
25秒前
paradox完成签到 ,获得积分10
26秒前
852应助耶梦加得采纳,获得10
50秒前
52秒前
小马甲应助修利采纳,获得10
57秒前
57秒前
田柾国发布了新的文献求助10
57秒前
tczw667完成签到,获得积分10
1分钟前
Perion完成签到 ,获得积分10
1分钟前
ding应助Rencc采纳,获得10
1分钟前
1分钟前
布同完成签到,获得积分10
1分钟前
修利发布了新的文献求助10
1分钟前
二十三发布了新的文献求助10
1分钟前
EED完成签到 ,获得积分10
1分钟前
Bearling完成签到,获得积分10
1分钟前
1分钟前
小马甲应助大方煎蛋采纳,获得10
1分钟前
1分钟前
科研通AI2S应助张宝采纳,获得10
1分钟前
1分钟前
襟花发布了新的文献求助10
1分钟前
1分钟前
hjj完成签到,获得积分10
1分钟前
hjj发布了新的文献求助10
1分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213078
求助须知:如何正确求助?哪些是违规求助? 2861888
关于积分的说明 8130887
捐赠科研通 2527823
什么是DOI,文献DOI怎么找? 1361727
科研通“疑难数据库(出版商)”最低求助积分说明 643516
邀请新用户注册赠送积分活动 615849