已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TLTNet: A novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation

级联 变压器 视网膜 分割 计算机科学 人工智能 计算机网络 模式识别(心理学) 医学 眼科 电气工程 化学 工程类 电压 色谱法
作者
Chengwei Wu,Min Guo,Miao Ma,Kaiguang Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108773-108773 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108773
摘要

Extracting global and local feature information is still challenging due to the problems of retinal blood vessel medical images like fuzzy edge features, noise, difficulty in distinguishing between lesion regions and background information, and loss of low-level feature information, which leads to insufficient extraction of feature information. To better solve these problems and fully extract the global and local feature information of the image, we propose a novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation, which consists of an encoder and a decoder and is connected between the encoder and decoder by a transscale transformer cascade module. Among them, the encoder consists of a local-global transscale transformer module, a multi-head layered transscale adaptive embedding module, and a local context(LCNet) module. The transscale transformer cascade module learns local and global feature information from the first three layers of the encoder, and multi-scale dependent features, fuses the hierarchical feature information from the skip connection block and the channel-token interaction fusion block, respectively, and inputs it to the decoder. The decoder includes a decoding module for the local context network and a transscale position transformer module to input the local and global feature information extracted from the encoder with retained key position information into the decoding module and the position embedding transformer module for recovery and output of the prediction results that are consistent with the input feature information. In addition, we propose an improved cross-entropy loss function based on the difference between the deterministic observation samples and the prediction results with the deviation distance, which is validated on the DRIVE and STARE datasets combined with the proposed network model based on the dual transformer structure in this paper, and the segmentation accuracies are 97.26% and 97.87%, respectively. Compared with other state-of-the-art networks, the results show that the proposed network model has a significant competitive advantage in improving the segmentation performance of retinal blood vessel images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
konosuba完成签到,获得积分0
刚刚
ZHANG完成签到 ,获得积分10
1秒前
建安完成签到,获得积分20
2秒前
zoye完成签到 ,获得积分10
2秒前
myg123完成签到 ,获得积分10
4秒前
自信夜春发布了新的文献求助10
4秒前
科研皇完成签到,获得积分10
9秒前
美好善斓完成签到 ,获得积分10
9秒前
冷静的访天完成签到 ,获得积分10
9秒前
自信夜春完成签到,获得积分10
10秒前
10秒前
刘瀚臻发布了新的文献求助20
11秒前
洛城完成签到,获得积分10
11秒前
晚意完成签到 ,获得积分10
12秒前
温馨家园完成签到 ,获得积分10
12秒前
hhhhh完成签到 ,获得积分10
13秒前
14秒前
南瓜小笨111111完成签到 ,获得积分10
14秒前
月冷完成签到 ,获得积分10
16秒前
huahua完成签到,获得积分10
16秒前
斯文败类应助bzy采纳,获得10
17秒前
17秒前
17秒前
wang1030完成签到 ,获得积分10
18秒前
讲故事发布了新的文献求助10
18秒前
小小佳作发布了新的文献求助150
19秒前
zyz发布了新的文献求助10
20秒前
zb发布了新的文献求助10
20秒前
徐铭完成签到,获得积分10
20秒前
大气幻丝完成签到,获得积分10
21秒前
llyn发布了新的文献求助10
21秒前
小L发布了新的文献求助10
22秒前
hhhh完成签到 ,获得积分10
22秒前
明亮的小蘑菇完成签到 ,获得积分10
23秒前
小二郎应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
Koalas应助刘瀚臻采纳,获得20
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493