TLTNet: A novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation

级联 变压器 视网膜 分割 计算机科学 人工智能 计算机网络 模式识别(心理学) 医学 眼科 电气工程 化学 工程类 电压 色谱法
作者
Chengwei Wu,Min Guo,Miao Ma,Kaiguang Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108773-108773 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108773
摘要

Extracting global and local feature information is still challenging due to the problems of retinal blood vessel medical images like fuzzy edge features, noise, difficulty in distinguishing between lesion regions and background information, and loss of low-level feature information, which leads to insufficient extraction of feature information. To better solve these problems and fully extract the global and local feature information of the image, we propose a novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation, which consists of an encoder and a decoder and is connected between the encoder and decoder by a transscale transformer cascade module. Among them, the encoder consists of a local-global transscale transformer module, a multi-head layered transscale adaptive embedding module, and a local context(LCNet) module. The transscale transformer cascade module learns local and global feature information from the first three layers of the encoder, and multi-scale dependent features, fuses the hierarchical feature information from the skip connection block and the channel-token interaction fusion block, respectively, and inputs it to the decoder. The decoder includes a decoding module for the local context network and a transscale position transformer module to input the local and global feature information extracted from the encoder with retained key position information into the decoding module and the position embedding transformer module for recovery and output of the prediction results that are consistent with the input feature information. In addition, we propose an improved cross-entropy loss function based on the difference between the deterministic observation samples and the prediction results with the deviation distance, which is validated on the DRIVE and STARE datasets combined with the proposed network model based on the dual transformer structure in this paper, and the segmentation accuracies are 97.26% and 97.87%, respectively. Compared with other state-of-the-art networks, the results show that the proposed network model has a significant competitive advantage in improving the segmentation performance of retinal blood vessel images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zjh采纳,获得10
刚刚
1秒前
斯文败类应助El采纳,获得10
3秒前
英姑应助lixiaotian采纳,获得10
3秒前
3秒前
4秒前
动听一手发布了新的文献求助30
5秒前
SciGPT应助科研通管家采纳,获得100
5秒前
李健应助科研通管家采纳,获得10
5秒前
每天100次应助科研通管家采纳,获得20
5秒前
5秒前
天天快乐应助科研通管家采纳,获得50
6秒前
小青椒应助科研通管家采纳,获得20
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
今后应助uiui采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
难过亦丝完成签到,获得积分10
7秒前
8秒前
nana发布了新的文献求助10
8秒前
难过亦丝发布了新的文献求助10
9秒前
科研通AI6应助自信的盼海采纳,获得10
10秒前
科研通AI5应助RepertoireFupeng采纳,获得30
11秒前
11秒前
量子星尘发布了新的文献求助50
12秒前
12秒前
科研通AI2S应助陈煜采纳,获得10
12秒前
12秒前
星星点灯完成签到,获得积分10
13秒前
13秒前
14秒前
贪玩的半芹完成签到,获得积分10
14秒前
刻苦的元灵完成签到 ,获得积分10
15秒前
16秒前
17秒前
图图发布了新的文献求助10
17秒前
Lll发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641