TLTNet: A novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation

级联 变压器 视网膜 分割 计算机科学 人工智能 计算机网络 模式识别(心理学) 医学 眼科 电气工程 化学 工程类 电压 色谱法
作者
Chengwei Wu,Min Guo,Miao Ma,Kaiguang Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108773-108773 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108773
摘要

Extracting global and local feature information is still challenging due to the problems of retinal blood vessel medical images like fuzzy edge features, noise, difficulty in distinguishing between lesion regions and background information, and loss of low-level feature information, which leads to insufficient extraction of feature information. To better solve these problems and fully extract the global and local feature information of the image, we propose a novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation, which consists of an encoder and a decoder and is connected between the encoder and decoder by a transscale transformer cascade module. Among them, the encoder consists of a local-global transscale transformer module, a multi-head layered transscale adaptive embedding module, and a local context(LCNet) module. The transscale transformer cascade module learns local and global feature information from the first three layers of the encoder, and multi-scale dependent features, fuses the hierarchical feature information from the skip connection block and the channel-token interaction fusion block, respectively, and inputs it to the decoder. The decoder includes a decoding module for the local context network and a transscale position transformer module to input the local and global feature information extracted from the encoder with retained key position information into the decoding module and the position embedding transformer module for recovery and output of the prediction results that are consistent with the input feature information. In addition, we propose an improved cross-entropy loss function based on the difference between the deterministic observation samples and the prediction results with the deviation distance, which is validated on the DRIVE and STARE datasets combined with the proposed network model based on the dual transformer structure in this paper, and the segmentation accuracies are 97.26% and 97.87%, respectively. Compared with other state-of-the-art networks, the results show that the proposed network model has a significant competitive advantage in improving the segmentation performance of retinal blood vessel images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不过尔尔完成签到 ,获得积分10
4秒前
珍珠火龙果完成签到 ,获得积分10
4秒前
稳重的白猫完成签到,获得积分10
7秒前
qianci2009完成签到,获得积分10
8秒前
ll完成签到 ,获得积分10
12秒前
敖江风云完成签到,获得积分10
13秒前
bckl888完成签到,获得积分10
13秒前
14秒前
欧阳月空发布了新的文献求助10
21秒前
KrisTina完成签到 ,获得积分10
23秒前
红茸茸羊完成签到 ,获得积分10
29秒前
欧阳月空完成签到,获得积分10
40秒前
不再一样完成签到,获得积分10
42秒前
FUNG完成签到 ,获得积分10
45秒前
46秒前
股价发布了新的文献求助30
54秒前
木子完成签到 ,获得积分10
55秒前
3120221053完成签到,获得积分10
56秒前
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
宛海发布了新的文献求助10
1分钟前
105完成签到 ,获得积分10
1分钟前
1分钟前
Wen完成签到 ,获得积分10
1分钟前
宛海完成签到,获得积分10
1分钟前
恒牙完成签到 ,获得积分10
1分钟前
股价发布了新的文献求助10
1分钟前
chenying完成签到 ,获得积分0
1分钟前
2316690509完成签到 ,获得积分10
1分钟前
不再挨训完成签到 ,获得积分10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
Noah完成签到 ,获得积分0
1分钟前
Jmoriarty完成签到,获得积分10
1分钟前
lilylwy完成签到 ,获得积分0
1分钟前
科奇完成签到,获得积分10
1分钟前
1分钟前
duckspy完成签到 ,获得积分10
2分钟前
股价发布了新的文献求助10
2分钟前
饱满烙完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965744
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155814
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251