A novel attLSTM framework combining the attention mechanism and bidirectional LSTM for demand forecasting

计算机科学 机制(生物学) 人工智能 需求预测 机器学习 运筹学 哲学 认识论 工程类
作者
Ligang Cui,Yingcong Chen,Jie Deng,Zhiyuan Han
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124409-124409 被引量:5
标识
DOI:10.1016/j.eswa.2024.124409
摘要

Demand forecasting has become the most crucial part for supporting supply chain decisions. However, accurate forecasting in time series demand forecasting, particularly within supply chain operations, is challenging because of short-term data features, such as limited volume, nonlinear datasets, and near history disturbances. As one of the most promising deep learning models, long short-term memory shows superior performance in extracting implicit patterns from datasets of various areas. Thus, a novel forecasting framework, attLSTM is constructed combining enhanced bidirectional LSTM (LSTM) and self-attention mechanism. The forecasting performance of attLSTM is verified by testing six randomly selected datasets and eight additional datasets with different volumes from a given database. The proposed attLSTM is compared with seasonal autoregressive integrated moving average, support vector machine, random forest, and LSTM through two commonly applied evaluation metrics and a specially designed newsvendor cost model. Extended experiments are conducted on four benchmark datasets from other fields. These analyses demonstrate that attLSTM shows comparable performance in supporting the supply chain demand forecasting and operational decisions. The proposed framework has robust generalization capability in univariate time series demand forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋月黄完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
在水一方应助舒心盼海采纳,获得10
2秒前
2秒前
znt完成签到,获得积分20
3秒前
咖飞完成签到,获得积分10
3秒前
激昂的千秋完成签到,获得积分10
3秒前
3秒前
3秒前
小张同学完成签到,获得积分10
4秒前
刘均珺发布了新的文献求助10
4秒前
4秒前
廖丽文完成签到,获得积分20
5秒前
5秒前
无花果应助momowang采纳,获得10
5秒前
wise111发布了新的文献求助10
5秒前
6秒前
6秒前
FashionBoy应助spwan采纳,获得10
7秒前
ji发布了新的文献求助10
7秒前
大模型应助暴富采纳,获得10
7秒前
pepsisery完成签到,获得积分10
7秒前
傲娇如天发布了新的文献求助10
7秒前
涪城的涪发布了新的文献求助10
7秒前
寒来暑往发布了新的文献求助10
7秒前
Li完成签到,获得积分10
8秒前
852应助神勇的天问采纳,获得10
8秒前
8秒前
8秒前
znt发布了新的文献求助20
8秒前
柳行天完成签到 ,获得积分10
8秒前
8秒前
传奇3应助花海采纳,获得10
8秒前
芹菜发布了新的文献求助10
9秒前
ZZ完成签到,获得积分10
10秒前
球球完成签到,获得积分10
10秒前
songcy7发布了新的文献求助10
10秒前
于予鱼完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769