A novel attLSTM framework combining the attention mechanism and bidirectional LSTM for demand forecasting

计算机科学 机制(生物学) 人工智能 需求预测 机器学习 运筹学 哲学 认识论 工程类
作者
Ligang Cui,Yingcong Chen,Jie Deng,Zhiyuan Han
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124409-124409 被引量:5
标识
DOI:10.1016/j.eswa.2024.124409
摘要

Demand forecasting has become the most crucial part for supporting supply chain decisions. However, accurate forecasting in time series demand forecasting, particularly within supply chain operations, is challenging because of short-term data features, such as limited volume, nonlinear datasets, and near history disturbances. As one of the most promising deep learning models, long short-term memory shows superior performance in extracting implicit patterns from datasets of various areas. Thus, a novel forecasting framework, attLSTM is constructed combining enhanced bidirectional LSTM (LSTM) and self-attention mechanism. The forecasting performance of attLSTM is verified by testing six randomly selected datasets and eight additional datasets with different volumes from a given database. The proposed attLSTM is compared with seasonal autoregressive integrated moving average, support vector machine, random forest, and LSTM through two commonly applied evaluation metrics and a specially designed newsvendor cost model. Extended experiments are conducted on four benchmark datasets from other fields. These analyses demonstrate that attLSTM shows comparable performance in supporting the supply chain demand forecasting and operational decisions. The proposed framework has robust generalization capability in univariate time series demand forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助SmileLin采纳,获得10
刚刚
ljx完成签到,获得积分10
1秒前
蓝莓小蛋糕完成签到 ,获得积分10
2秒前
幽默大有发布了新的文献求助10
2秒前
微熏的羊完成签到,获得积分20
4秒前
许钟一发布了新的文献求助10
4秒前
ember完成签到 ,获得积分10
4秒前
温婉的以松完成签到,获得积分10
5秒前
ZZY完成签到,获得积分10
6秒前
qizhia完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
CC发布了新的文献求助10
7秒前
卖报的小行家完成签到,获得积分10
7秒前
7秒前
Oasis完成签到,获得积分10
8秒前
8秒前
9秒前
微熏的羊发布了新的文献求助10
9秒前
okra发布了新的文献求助10
10秒前
13秒前
13秒前
qizhia发布了新的文献求助10
13秒前
13秒前
许钟一完成签到,获得积分10
13秒前
高挑的白旋风完成签到,获得积分10
14秒前
ZZY发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
Zzz发布了新的文献求助10
20秒前
20秒前
懒回顾发布了新的文献求助10
21秒前
22秒前
Lucas应助玩转科研徐小白采纳,获得10
22秒前
23秒前
23秒前
yunna_ning完成签到,获得积分10
23秒前
顺心若魔完成签到,获得积分20
23秒前
123完成签到,获得积分10
24秒前
CodeCraft应助芒果加辣椒采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421479
求助须知:如何正确求助?哪些是违规求助? 4536463
关于积分的说明 14153840
捐赠科研通 4453053
什么是DOI,文献DOI怎么找? 2442691
邀请新用户注册赠送积分活动 1434059
关于科研通互助平台的介绍 1411248