已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel attLSTM framework combining the attention mechanism and bidirectional LSTM for demand forecasting

计算机科学 机制(生物学) 人工智能 需求预测 机器学习 运筹学 哲学 认识论 工程类
作者
Ligang Cui,Yingcong Chen,Jie Deng,Zhiyuan Han
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124409-124409 被引量:5
标识
DOI:10.1016/j.eswa.2024.124409
摘要

Demand forecasting has become the most crucial part for supporting supply chain decisions. However, accurate forecasting in time series demand forecasting, particularly within supply chain operations, is challenging because of short-term data features, such as limited volume, nonlinear datasets, and near history disturbances. As one of the most promising deep learning models, long short-term memory shows superior performance in extracting implicit patterns from datasets of various areas. Thus, a novel forecasting framework, attLSTM is constructed combining enhanced bidirectional LSTM (LSTM) and self-attention mechanism. The forecasting performance of attLSTM is verified by testing six randomly selected datasets and eight additional datasets with different volumes from a given database. The proposed attLSTM is compared with seasonal autoregressive integrated moving average, support vector machine, random forest, and LSTM through two commonly applied evaluation metrics and a specially designed newsvendor cost model. Extended experiments are conducted on four benchmark datasets from other fields. These analyses demonstrate that attLSTM shows comparable performance in supporting the supply chain demand forecasting and operational decisions. The proposed framework has robust generalization capability in univariate time series demand forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你奈我何发布了新的文献求助10
刚刚
1秒前
自觉画板发布了新的文献求助10
2秒前
xx发布了新的文献求助10
3秒前
乌拉拉发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得30
4秒前
无花果应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得30
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
shi hui应助科研通管家采纳,获得10
4秒前
qcy应助科研通管家采纳,获得30
5秒前
siri应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
splemeth发布了新的文献求助20
5秒前
科研通AI6应助哭泣绝音采纳,获得10
8秒前
8秒前
Aaron567应助暴走乄采纳,获得40
8秒前
9秒前
9秒前
科研通AI6应助乌拉拉采纳,获得10
10秒前
wuyong完成签到,获得积分10
10秒前
12秒前
懒癌晚期发布了新的文献求助10
13秒前
李健应助splemeth采纳,获得10
14秒前
15秒前
kkk完成签到,获得积分10
16秒前
机智无春完成签到 ,获得积分10
16秒前
UPUP0707完成签到,获得积分10
16秒前
18秒前
所所应助Q哈哈哈采纳,获得30
18秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384767
求助须知:如何正确求助?哪些是违规求助? 4507576
关于积分的说明 14028458
捐赠科研通 4417282
什么是DOI,文献DOI怎么找? 2426391
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485